Advertisement

Human Genetics

, Volume 115, Issue 4, pp 285–294 | Cite as

Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2

  • Peter Eck
  • Hans Christian Erichsen
  • James G. Taylor
  • Meredith Yeager
  • Austin L. Hughes
  • Mark Levine
  • Stephen J. ChanockEmail author
Original Investigation

Abstract

Vitamin C (L-ascorbic acid) is an essential co-factor for eight mammalian enzymes and quenches reactive oxygen species. Sodium-dependent vitamin C transport is mediated by two transporters, SVCT 1 and SVCT 2, encoded by SLC23A1 and SLC23A2. We characterized the genomic structures of SLC23A1 and SLC23A2, determined the extent of genetic variation and linkage disequilibrium across each gene, analyzed nucleotide diversity to estimate the effect of selective pressure, and compared sequence variation across species. In SLC23A1, the majority of single nucleotide polymorphisms (SNPs) are population-specific in either African Americans or Caucasians, including three of four non-synonymous SNPs. In contrast, most SNPs in SLC23A2 are shared between African Americans and Caucasians, and there are no non-synonymous SNPs in SLC23A2. Our analysis, combined with previous in vitro and in vivo studies, suggests that non-synonymous variation appears to be tolerated in SLC23A1 but not SLC23A2, and that this may be a consequence of different selective pressures following past gene duplication of the sodium-dependent vitamin C transporters. Genetic association studies of these two genes will need to account for the differences in haplotype structure and the population-specific variants. Our data represent a fundamental step toward the application of genetics to refining nutrient recommendations, specifically for vitamin C, and may serve as a paradigm for other vitamins.

Keywords

African American Dehydroascorbic Acid Nonsynonymous SNPs Renal Reabsorption Nutrient Recommendation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Burset M, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28:4364–4375CrossRefPubMedGoogle Scholar
  2. Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA (2003) Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet 33:518–521CrossRefPubMedGoogle Scholar
  3. Collins FS (1999) Shattuck lecture—medical and societal consequences of the Human Genome Project. N Engl J Med 341:28–37CrossRefPubMedGoogle Scholar
  4. Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484Google Scholar
  5. Dhariwal KR, Hartzell WO, Levine M (1991) Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J Clin Nutr 54:712–716PubMedGoogle Scholar
  6. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12:205–216CrossRefPubMedGoogle Scholar
  7. Dubchak I, Brudno M, Loots GG, Pachter L, Mayor C, Rubin EM, Frazer KA (2000) Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 10:1304–1306CrossRefPubMedGoogle Scholar
  8. Erichsen HC, Eck P, Levine M, Chanock S (2001) Characterization of the genomic structure of the human vitamin C transporter SVCT1 (SLC23A2). J Nutr 131:2623–2627PubMedGoogle Scholar
  9. Food and Nutrition Board PoDAaRC (2000) Vitamin C. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington DC, pp 1–185Google Scholar
  10. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  11. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229CrossRefPubMedGoogle Scholar
  12. Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nat Genet 27:234–236CrossRefPubMedGoogle Scholar
  13. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920CrossRefPubMedGoogle Scholar
  14. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245CrossRefPubMedGoogle Scholar
  15. Leabman MK, Huang CC, DeYoung J, Carlson EJ, Taylor TR, Cruz M de la, Johns SJ, Stryke D, Kawamoto M, Urban TJ, Kroetz DL, Ferrin TE, Clark AG, Risch N, Herskowitz I, Giacomini KM (2003) Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci USA 100:5896–5901CrossRefPubMedGoogle Scholar
  16. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA 93:3704–3709CrossRefPubMedGoogle Scholar
  17. Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y (1999) Criteria and recommendations for vitamin C intake. JAMA 281:1415–1423CrossRefPubMedGoogle Scholar
  18. Levine M, Wang Y, Padayatty SJ, Morrow J (2001) A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA 98:9842–9846CrossRefPubMedGoogle Scholar
  19. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046–1047CrossRefPubMedGoogle Scholar
  20. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688Google Scholar
  21. Ota T, Nei M (1994) Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J Mol Evol 38:642–643Google Scholar
  22. Packer BR, Yeager M, Staats B, Welch R, Crenshaw A, Kiley M, Eckert A, Beerman M, Miller E, Bergen A, Rothman N, Strausberg R, Chanock SJ (2004) SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res 32:D528–D532CrossRefGoogle Scholar
  23. Reich DE, Gabriel SB, Altshuler D (2003) Quality and completeness of SNP databases. Nat Genet 33:457–458CrossRefPubMedGoogle Scholar
  24. Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856CrossRefPubMedGoogle Scholar
  25. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272:18982–18989CrossRefPubMedGoogle Scholar
  26. Rumsey SC, Welch RW, Garraffo HM, Ge P, Lu SF, Crossman AT, Kirk KL, Levine M (1999) Specificity of ascorbate analogs for ascorbate transport. Synthesis and detection of [(125)I]6-deoxy-6-iodo-L-ascorbic acid and characterization of its ascorbate-specific transport properties. J Biol Chem 274:23215–23222CrossRefPubMedGoogle Scholar
  27. Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M (2000) Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275:28246–28253PubMedGoogle Scholar
  28. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967Google Scholar
  29. Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH, Nussbaum RL (2002) Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med 8:514–517CrossRefPubMedGoogle Scholar
  30. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedGoogle Scholar
  31. Stram DO, Leigh-Pearce C, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D, Kolonel L, Henderson BE, Thomas DC (2003) Modeling and E-M estimation of haplotype-specific risks from genotype data for a case-control study of unrelated individuals. Hum Hered 55:179–190CrossRefGoogle Scholar
  32. Stratakis CA, Taymans SE, Daruwala R, Song J, Levine M (2000) Mapping of the human genes (SLC23A2 and SLC23A1) coding for vitamin C transporters 1 and 2 (SVCT1 and SVCT2) to 5q23 and 20p12, respectively. J Med Genet 37:E20CrossRefPubMedGoogle Scholar
  33. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  34. Taylor JG, Choi EH, Foster CB, Chanock SJ (2001) Using genetic variation to study human disease. Trends Mol Med 7:507–512CrossRefPubMedGoogle Scholar
  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  36. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75CrossRefPubMedGoogle Scholar
  37. Vera JC, Rivas CI, Fischbarg J, Golde DW (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79–82CrossRefPubMedGoogle Scholar
  38. Wang Y, Russo TA, Kwon O, Chanock S, Rumsey SC, Levine M (1997) Ascorbate recycling in human neutrophils: induction by bacteria. Proc Natl Acad Sci USA 94:13816–13819CrossRefPubMedGoogle Scholar
  39. Wang H, Dutta B, Huang W, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim Biophys Acta 1461:1–9CrossRefPubMedGoogle Scholar
  40. Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (2000) Human vitamin C (l-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun 267:488–494CrossRefPubMedGoogle Scholar
  41. Washko PW, Wang Y, Levine M (1993) Ascorbic acid recycling in human neutrophils. J Biol Chem 268:15531–15535PubMedGoogle Scholar
  42. Williams RJ, Deason G (1967) Individuality in vitamin C needs. Proc Natl Acad Sci USA 57:1638–1641PubMedGoogle Scholar
  43. Williams RJ, Pelton RB (1966) Individuality in nutrition: effects of vitamin A-deficient and other deficient diets on experimental animals. Proc Natl Acad Sci USA 55:126–134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Peter Eck
    • 1
  • Hans Christian Erichsen
    • 2
  • James G. Taylor
    • 2
  • Meredith Yeager
    • 3
  • Austin L. Hughes
    • 4
  • Mark Levine
    • 1
  • Stephen J. Chanock
    • 2
    Email author
  1. 1.Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Section on Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, Advanced Technology CenterNational Institutes of HealthGaithersburgUSA
  3. 3.Intramural Research Support ProgramSAIC Frederick, NCI-FCRDCFrederickUSA
  4. 4.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations