Human Genetics

, Volume 115, Issue 4, pp 310–318 | Cite as

Association between evolutionary history of angiotensinogen haplotypes and plasma levels

  • Laura Fejerman
  • Nourdine Bouzekri
  • Xiaodong Wu
  • Adebowale Adeyemo
  • Amy Luke
  • Xiaofeng Zhu
  • Ryk Ward
  • Richard S. Cooper
Original Investigation


Over the last decade, considerable effort has been invested in studying the associations between angiotensinogen (AGT) variants, AGT plasma levels and high blood pressure. Evidence accumulated to date consistently supports the relationship between the AGT locus and the protein level, while an influence on blood pressure has been difficult to establish; in both instances the predisposing molecular variants are not fully defined. An evolutionary approach, taking into account the phylogenetic relationship between all the polymorphisms at this locus, may improve our understanding of the genetic nature of these quantitative phenotypes. Accordingly we sequenced a 6.8 kb region of the AGT gene in 57 Nigerian individuals (29 with high AGT plasma levels and 28 with low AGT plasma levels). Haplotypes were grouped into seven major haplogroups and their phylogenetic relationship was established. The association between haplogroups and AGT plasma levels was investigated. A significant linear correlation was detected between haplogroup genetic distance and AGT levels, suggesting a nonrandom accumulation of risk-associated mutations during the evolutionary history of the AGT gene.


Genetic Distance Angiotensinogen 235T Variant Average Excess Major Haplogroups 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by grants from the NHLBI (HL45508; HL 47910). We would also like to thank the residents of Igbo-Ora, Nigeria for their willing participation in this research project. Donghui Kan assisted with statistical programming.


  1. Abecasis GR, Cookson WO (2000) GOLD—graphical overview of linkage disequlibrium. Bioinformatics 16:182–183CrossRefPubMedGoogle Scholar
  2. Abecasis GR, Noguchi E, Heinzmann A, Traherne JA, Bhattacharyya S, Leaves NI, Anderson GG, Zhang Y, Lench NJ, Carey A, Cardon LR, Moffatt MF, Cookson WO (2001a) Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 68:191–197CrossRefPubMedGoogle Scholar
  3. Abecasis GR, Cookson WO, Cardon LR (2001b) The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 68:1463–1474CrossRefPubMedGoogle Scholar
  4. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309CrossRefPubMedGoogle Scholar
  5. Bandelt H-J, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations. Genetics 141:743–753PubMedGoogle Scholar
  6. Caulfield M, Lavender P, Newell-Price J, Farrall M, Kamdar S, Daniel H, Lawson M, De Freitas P, Fogarty P, Clark AJ (1995) Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans. J Clin Invest 96:687–692PubMedGoogle Scholar
  7. Cooper RS, Rotimi CN, Ataman SL, McGee DL, Osotimehin B, Kadiri S, Muna W, Kingue S, Fraser H, Forrester T, Bennett F, Wilks R (1997) The prevalence of hypertension in seven populations of West African origin. Am J Public Health 87:160–168PubMedGoogle Scholar
  8. Cooper R, Forrester T, Ogunbiyi O, Muffinda J (1998) Angiotensinogen levels and obesity in four black populations. J Hypertens 16:571–575CrossRefPubMedGoogle Scholar
  9. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232CrossRefPubMedGoogle Scholar
  10. Forrester T, McFarlane-Anderson N, Bennet F, Wilks R, Puras A, Cooper R, Rotimi C, Durazo R, Tewksbury D, Morrison L (1996) Angiotensinogen and blood pressure among blacks: findings from a community survey in Jamaica. J Hypertens 14:315–321PubMedGoogle Scholar
  11. Fullerton SM, Bartoszewics A, Ybazeta G, Horikawa Y, Bell GI, Kidd KK, Cox NJ, Hudson RR, Di Rienzo A (2002) Geographic and haplotype structure of candidate type 2 diabetes-susceptibility variants at the Calpain-10 locus. Am J Hum Genet 70:1096–1106CrossRefPubMedGoogle Scholar
  12. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of the haplotype blocks in the human genome. Science 296:2225–2229CrossRefPubMedGoogle Scholar
  13. Goldstein DB (2001) Islands of linkage disequilibrium. Nat Genet 29:109–111CrossRefPubMedGoogle Scholar
  14. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, Cheng T, Ludwig EH, Sharma AM, Hata A, Jeunemaitre X, Lalouel JM (1997) A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 99:1786–1797PubMedGoogle Scholar
  15. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169–180CrossRefPubMedGoogle Scholar
  16. Jeunemaitre X, Inoue I, Williams C, Charru A, Tichet J, Powers M, Sharma AM, Gimenez-Roqueplo AP, Hata A, Corvol P, Lalouel JM (1997) Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 60:1448–1460PubMedGoogle Scholar
  17. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29:233–237CrossRefPubMedGoogle Scholar
  18. Lai E, Bowman C, Bansal A, Hughes A, Mosteller M, Roses AD (2002) Medical applications of haplotype-based SNP maps: learning to walk before we run. Nat Genet 32:353–354CrossRefPubMedGoogle Scholar
  19. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67Google Scholar
  20. Mackay TFC (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2:11–20CrossRefPubMedGoogle Scholar
  21. Mitchell-Olds T (1995) The molecular basis of quantitative genetic variation in natural populations. Trends Ecol Evol 10:324–328CrossRefGoogle Scholar
  22. Nakajima T, Jorde LB, Ishigami T, Umemura S, Emi M, Lalouel JM, Inoue I (2002) Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. Am J Hum Genet 70:108–123CrossRefPubMedGoogle Scholar
  23. Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362PubMedGoogle Scholar
  24. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT, Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719–1723CrossRefPubMedGoogle Scholar
  25. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14CrossRefPubMedGoogle Scholar
  26. Province MA, Boerwinkle E, Chakravarti A, Cooper R, Fornage M, Leppert M, Risch N, Ranade K (2000) Lack of association of the angiotensinogen −6 polymorphism with blood pressure levels in the comprehensive NHLBI family blood pressure program. J Hypertens 18:867–876CrossRefPubMedGoogle Scholar
  27. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, Lander ES (2001) Linkage disequilibrium in the human genome. Nature 411:199–204CrossRefPubMedGoogle Scholar
  28. Robertson A (1967) The nature of quantitative genetic variation. In: Brink A (ed) Heritage from Mendel. University of Wisconsin, Madison, pp 265–280Google Scholar
  29. Rotimi C, Puras A, Cooper R, McFarlane-Anderson N, Forrester T, Ogunbiyi O, Morrison L, Ward R (1996) Polymorphisms of renin-angiotensin genes among Nigerians, Jamaicans, and African Americans. Hypertens 27[part 2]:558–563Google Scholar
  30. Rotimi C, Cooper R, Ogunbiyi O, Morrison L, Ladipo M, Tewksbury D, Ward R (1997) Hypertension, serum angiotensinogen, and molecular variants of the angiotensinogen gene among Nigerians. Circulation 95:2348–2350PubMedGoogle Scholar
  31. Sethi AA, Nordestgaard BG, Gronholdt MM, Steffensen R, Jensen G, Tybjaerg-Hansen A (2003) Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease. Hypertension 41:1202–1211CrossRefPubMedGoogle Scholar
  32. Stam LF, Laurie CC (1996) Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144:1559–1564PubMedGoogle Scholar
  33. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedGoogle Scholar
  34. Taillon-Miller P, Bauer-Sardina I, Saccone NL, Putzel J, Laitinen T, Cao A, Kere J, Pilia G, Rice JP, Kwok PY (2000) Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet 25:324–328CrossRefPubMedGoogle Scholar
  35. Templeton AR, Sing CF, Kessling A, Humphries S (1988) A cladistic analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping. II. The analysis of natural populations. Genetics 120:1145–1154PubMedGoogle Scholar
  36. Tishkoff SA, Williams SM (2002) Genetic analysis of African populations: human evolution and complex disease. Nat Rev 3:611–621PubMedGoogle Scholar
  37. Weiss KM, Clark AG (2002) Linkage disequilibrium and the mapping of complex human traits. Trends Genet 18:19–24CrossRefPubMedGoogle Scholar
  38. Wolf-Maier K, Cooper RS, Banegas JR, Biampaoli S, Hense H, Joffres M, Kastarinen M, Poulter N, Primatesta P, Rodriguez-Artalejo F, Stegmayr B, Thamm M, Tuomilehto J, Vanuzzo D, Vescio F (2003) Hypertension and blood pressure level in six European countries, Canada and the US. JAMA 289:2363–2369CrossRefPubMedGoogle Scholar
  39. Zhu X, McKenzie CA, Forrester T, Nickerson DA, Broeckel U, Schunkert H, Doering A, Jacob HJ, Cooper RS, Rieder MJ (2000) Localization of a small genomic region associated with elevated ACE. Am J Hum Genet 67:1144–1153PubMedGoogle Scholar
  40. Zhu X, Bouzekri N, Southam L, Cooper RS, Adeyemo A, McKenzie CA, Luke A, Chen G, Elston RC, Ward R (2001) Linkage and association analysis of angiotensin I-converting enzyme (ACE)-gene polymorphisms with ACE level and blood pressure. Am J Hum Genet 68:1139–1148CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Laura Fejerman
    • 1
  • Nourdine Bouzekri
    • 1
  • Xiaodong Wu
    • 2
  • Adebowale Adeyemo
    • 3
  • Amy Luke
    • 2
  • Xiaofeng Zhu
    • 2
  • Ryk Ward
    • 1
  • Richard S. Cooper
    • 2
  1. 1.Department of Biological AnthropologyOxford UniversityOxfordUK
  2. 2.Department of Preventive Medicine and EpidemiologyLoyola University Medical CenterMaywoodUSA
  3. 3.Department of Pediatrics, University College HospitalUniversity of IbadanIbadanNigeria

Personalised recommendations