Human Genetics

, Volume 115, Issue 2, pp 149–156 | Cite as

Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11)

  • Mirjam W. J. Luijendijk
  • Erwin van Wijk
  • Anne M. L. C. Bischoff
  • Elmar Krieger
  • Patrick L. M. Huygen
  • Ronald J. E. Pennings
  • Han G. Brunner
  • Cor W. R. J. Cremers
  • Frans P. M. Cremers
  • Hannie Kremer
Original Investigation

Abstract

Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles the previously published DFNA11 family. The affected family members show a flat audiogram at young ages and only modest progression, most clearly at the high frequencies. In addition, they suffer from minor vestibular symptoms. Linkage analysis yielded a maximum two-point lodscore of 3.43 for marker D11S937 located within 1 cM of the myosin VIIA gene. The myosin VIIA gene was sequenced and 11 nucleotide variations were found. Ten nucleotide changes represent benign intronic variants, silent exon mutations or non-pathologic amino acid substitutions. One variant, a c.1373A→T transversion that is heterozygously present in all affected family members and absent in 300 healthy individuals, is predicted to result in an Asn458Ile amino acid substitution. Asn458 is located in a region of the myosin VIIA motor domain that is highly conserved in different classes of myosins and in myosins of different species. To evaluate whether the Asn458Ile mutation was indeed responsible for the hearing impairment, a molecular model of myosin VIIA was built based on the known structure of the myosin II heavy chain from Dictyostelium discoideum. In this model, conformational changes in the protein caused by the amino acid substitution Asn458Ile are predicted to disrupt ATP/ADP binding and impair the myosin power-stroke, which would have a severe effect on the function of the myosin VIIA protein.

References

  1. Adato A, Weil D, Kalinski H, Pel-Or Y, Ayadi H, Petit C, Korostishevsky M, Bonne-Tamir B (1997) Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype analysis, in Usher 1B families from diverse origins. Am J Hum Genet 61:813–821PubMedGoogle Scholar
  2. Bharadwaj AK, Kasztejna JP, Huq S, Berson EL, Dryja TP (2000) Evaluation of the myosin VIIA gene and visual function in patients with Usher syndrome type I. Exp Eye Res 71:173–181CrossRefPubMedGoogle Scholar
  3. Boeda B, El Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houdusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689–6699CrossRefPubMedGoogle Scholar
  4. El-Amraoui A, Sahly I, Picaud S, Sahel J, Abitbol M, Petit C (1996) Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum Mol Genet 5:1171–1178CrossRefPubMedGoogle Scholar
  5. El-Amraoui A, Schonn JS, Kussel-Andermann P, Blanchard S, Desnos C, Henry JP, Wolfrum U, Darchen F, Petit C (2002) MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep 3:463–470CrossRefPubMedGoogle Scholar
  6. Ernest S, Rauch GJ, Haffter P, Geisler R, Petit C, Nicolson T (2000) Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum Mol Genet 9:2189–2196CrossRefPubMedGoogle Scholar
  7. Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34:8960–8972PubMedGoogle Scholar
  8. Furch M, Fujita-Becker S, Geeves MA, Holmes KC, Manstein DJ (1999) Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin. J Mol Biol 290:797–809CrossRefPubMedGoogle Scholar
  9. Gibbs D, Kitamoto J, Williams DS (2003) Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci USA 100:6481–6486CrossRefPubMedGoogle Scholar
  10. Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 92:9815–9819PubMedGoogle Scholar
  11. Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307CrossRefPubMedGoogle Scholar
  12. Hirokawa N, Takemura R (2003) Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci 28:558–565CrossRefPubMedGoogle Scholar
  13. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272PubMedGoogle Scholar
  14. Janecke AR, Meins M, Sadeghi M, Grundmann K, Apfelstedt-Sylla E, Zrenner E, Rosenberg T, Gal A (1999) Twelve novel myosin VIIA mutations in 34 patients with Usher syndrome type I: confirmation of genetic heterogeneity. Hum Mutat 13:133–140CrossRefPubMedGoogle Scholar
  15. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520PubMedGoogle Scholar
  16. Kliche W, Fujita-Becker S, Kollmar M, Manstein DJ, Kull FJ (2001) Structure of a genetically engineered molecular motor. EMBO J 20:40–46CrossRefPubMedGoogle Scholar
  17. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMedGoogle Scholar
  18. Kremer H, Kuyt LP, Helm B van den, Reen M van, Leunissen JA, Hamel BC, Jansen C, Mariman EC, Frants RR, Padberg GW (1996) Localization of a gene for Mobius syndrome to chromosome 3q by linkage analysis in a Dutch family. Hum Mol Genet 5:1367–1371PubMedGoogle Scholar
  19. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47:393–402CrossRefPubMedGoogle Scholar
  20. Kros CJ, Marcotti W, Netten SM van, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47PubMedGoogle Scholar
  21. Lathrop GM, Lalouel JM (1984) Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 36:460–465PubMedGoogle Scholar
  22. Lathrop GM, Lalouel J-M, Julier C, Ott J (1984) Strategies for multilocus analysis in humans. Proc Natl Acad Sci USA 81:3443–3446PubMedGoogle Scholar
  23. Lathrop GM, Lalouel JM, White RL (1986) Construction of human linkage maps: likelihood calculations for multilocus linkage analysis. Genet Epidemiol 3:39–52PubMedGoogle Scholar
  24. Lévy G, Levi-Acobas F, Blanchard S, Gerber S, Larget-Piet D, Chenal V, Liu XZ, Newton V, Steel KP, Brown SD, Munnich A, Kaplan J, Petit C, Weil D (1997) Myosin VIIA gene: heterogeneity of the mutations responsible for Usher syndrome type IB. Hum Mol Genet 6:111–116CrossRefPubMedGoogle Scholar
  25. Liu XZ (2002) The clinical presentation of DFNB2. Adv Otorhinolaryngol 61:120–123PubMedGoogle Scholar
  26. Liu XZ, Walsh J, Mburu P, Kendrick-Jones J, Cope MJTV, Steel KP, Brown SDM (1997a) Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 16:188–190PubMedGoogle Scholar
  27. Liu XZ, Walsh J, Tamagawa Y, Kitamura K, Nishizawa M, Steel KP, Brown SDM (1997b) Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nature Genet 17:268–269PubMedGoogle Scholar
  28. Liu XZ, Hope C, Walsh J, Newton V, Ke XM, Liang CY, Xu LR, Zhou JM, Trump D, Steel KP, Bundey S, Brown SDM (1998) Mutations in the myosin VIIA gene cause a wide phenotypic spectrum, including atypical Usher syndrome. Am J Hum Genet 63:909–912CrossRefPubMedGoogle Scholar
  29. Liu XZ, Udovichenko IP, Brown SD, Steel KP, Williams DS (1999) Myosin VIIa participates in opsin transport through the photoreceptor cilium. J Neurosci 19:6267–6274PubMedGoogle Scholar
  30. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedGoogle Scholar
  31. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516PubMedGoogle Scholar
  32. Oliver TN, Berg JS, Cheney RE (1999) Tails of unconventional myosins. Cell Mol Life Sci 56:243–257CrossRefPubMedGoogle Scholar
  33. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94CrossRefPubMedGoogle Scholar
  34. Sasaki N, Sutoh K (1998) Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II. Adv Biophys 35:1–24CrossRefPubMedGoogle Scholar
  35. Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566PubMedGoogle Scholar
  36. Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174PubMedGoogle Scholar
  37. Tamagawa Y, Ishikawa K, Ishikawa K, Ishida T, Kitamura K, Makino S, Tsuru T, Ichimura K (2002) Phenotype of DFNA11: a nonsyndromic hearing loss caused by a myosin VIIA mutation. Laryngoscope 112:292–297CrossRefPubMedGoogle Scholar
  38. Tsiavaliaris G, Fujita-Becker S, Batra R, Levitsky DI, Kull FJ, Geeves MA, Manstein DJ (2002) Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium. EMBO Rep 3:1099–1105CrossRefPubMedGoogle Scholar
  39. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56PubMedGoogle Scholar
  40. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, Kelley PM, Kimberling WJ, Wagenaar M, Levi-Acobas F, Larget-Piet D, Munnich A, Steel KP, Brown SDM, Petit C (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61PubMedGoogle Scholar
  41. Weil D, Küssel P, Blanchard S, Lévy G, Levi-Acobas F, Drira M, Ayadi H, Petit C (1997) The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16:191–193PubMedGoogle Scholar
  42. Weston MD, Kelley PM, Overbeck LD, Wagenaar M, Orten DJ, Hasson T, Chen ZY, Corey D, Mooseker M, Sumegi J, Cremers C, Moller C, Jacobson SG, Gorin MB, Kimberling WJ (1996) Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients. Am J Hum Genet 59:1074–1083PubMedGoogle Scholar
  43. Wolfrum U, Schmitt A (2000) Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 46:95–107CrossRefPubMedGoogle Scholar
  44. Zina ZB, Masmoudi S, Ayadi H, Chaker F, Ghorbel AM, Drira M, Petit C (2001) From DFNB2 to Usher syndrome: variable expressivity of the same disease. Am J Med Genet 101:181–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Mirjam W. J. Luijendijk
    • 1
  • Erwin van Wijk
    • 2
  • Anne M. L. C. Bischoff
    • 2
  • Elmar Krieger
    • 3
  • Patrick L. M. Huygen
    • 2
  • Ronald J. E. Pennings
    • 2
  • Han G. Brunner
    • 1
  • Cor W. R. J. Cremers
    • 2
  • Frans P. M. Cremers
    • 1
  • Hannie Kremer
    • 2
    • 4
  1. 1.Department of Human GeneticsUniversity Medical Center NijmegenNijmegenThe Netherlands
  2. 2.Department of OtorhinolaryngologyUniversity Medical Center NijmegenNijmegenThe Netherlands
  3. 3.Center for Molecular and Biomolecular InformaticsUniversity of NijmegenNijmegenThe Netherlands
  4. 4.Department of Human GeneticsUniversity Medical Center NijmegenNijmegenThe Netherlands

Personalised recommendations