Human Genetics

, Volume 114, Issue 6, pp 553–561 | Cite as

SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome

  • Maren Runte
  • Peter M. Kroisel
  • Gabriele Gillessen-Kaesbach
  • Raymonda Varon
  • Denise Horn
  • Monika Y. Cohen
  • Joseph Wagstaff
  • Bernhard Horsthemke
  • Karin Buiting
Original Investigation

Abstract

The imprinted domain on human chromosome 15 consists of two oppositely imprinted gene clusters, which are under the control of an imprinting center (IC). The paternally expressed SNURF-SNRPN gene hosts several snoRNA genes and overlaps the UBE3A gene, which is encoded on the opposite strand, expressed — at least in brain cells — from the maternal chromosome only, and affected in patients with Angelman syndrome (AS). In contrast to SNURF-SNRPN, imprinted expression of UBE3A is not regulated by a 5′ differentially methylated region. Here we report that splice forms of the SNURF-SNRPN transcript overlapping UBE3A in an antisense orientation are present in brain but barely detectable in blood. In contrast, splice forms that do not overlap with UBE3A are of similar abundance in brain and blood. The tissue distribution of the splice forms parallels that of the snoRNAs encoded in the respective parts of the SNURF-SNRPN transcript. Using a quantitative PCR assay, we have found that the ratio of SNURF-SNRPN/UBE3A transcript levels is increased in blood cells of AS patients with an imprinting defect, but not in AS patients with a UBE3A mutation or an unknown defect. Our findings are compatible with the assumption that imprinted UBE3A expression is regulated through the SNURF-SNRPN sense-UBE3A antisense transcript.

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant BU907/1-2). We would like to thank Alexander Hüttenhofer for helpful discussion. We also thank Dagmar Wieczorek for providing us with blood from patients.

References

  1. Baumer A, Balmer D, Schinzel A (1999) Screening for UBE3A gene mutations in a group of Angelman syndrome patients selected according to non-stringent clinical criteria. Hum Genet 105:598–602CrossRefPubMedGoogle Scholar
  2. Buiting K, Dittrich B, Endele S, Horsthemke B (1996) Identification of novel 3′ exons of the human SNRPN gene. Genomics 40:132–137CrossRefGoogle Scholar
  3. Buiting K, Farber C, Kroisel P, Wagner K, Brueton L, Robertson ME, Lich C, Horsthemke B (2000) Imprinting centre deletions in two PWS families: implications for diagnostic testing and genetic counseling. Clin Genet 58:284–290CrossRefPubMedGoogle Scholar
  4. Buiting K, Barnicoat A, Lich C, Pembrey M, Malcom S, Horsthemke B (2001) Disruption of the bipartite imprinting center in a family with Angelman syndrome. Am J Hum Genet 68:1290–1294CrossRefPubMedGoogle Scholar
  5. Buiting K, Groß S, Lich C, Gillessen-Kaesbach G, El-Maarri O, Horsthemke B (2003) Epimutations in Prader-Willi and Angelman syndrome: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 72:571–577CrossRefPubMedGoogle Scholar
  6. Byers PH (2002) Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest 109:3–6PubMedGoogle Scholar
  7. Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Hüttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316CrossRefPubMedGoogle Scholar
  8. Chamberlain SJ, Brannan CI (2001) The Prader-Willi syndrome imprinting-center activates the paternally expressed murine Ube3a antisense transcript, but represses paternal Ube3a. Genomics 73:316–322Google Scholar
  9. Dittrich B, Buiting K, Korn B, Rickard S, Buxton J, Saitoh S, Nicholls RD, Poustka A, Winterpacht A, Zabel B, Horsthemke B (1996) Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet 14:163–170PubMedGoogle Scholar
  10. El-Maarri O, Buiting K, Peery EG, Kroisel PM, Balaban B, Wagner K, Urman B, Heyd J, Lich C, Brannan CI, Walter J, Horsthemke B (2001) Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet 27:341–344PubMedGoogle Scholar
  11. Fang P, Lev-Lehman E, Tsai TF, Matsuura T, Benton CS, Sutcliffe JS, Christian SL, Kubota T, Halley DJ, Meijers-Heijboer H, Langlois S, Graham JM Jr, Beuten J, Willems PJ, Ledbetter DH, Beaudet AL (1999) The spectrum of mutations in UBE3A causing Angelman syndrome. Hum Mol Genet 8:129–135PubMedGoogle Scholar
  12. Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32:426–431CrossRefPubMedGoogle Scholar
  13. Gray TA, Saitoh S, Nicholls RD (1999) An imprinted, mammalian bicistronic transcript encodes two indepented proteins. Proc Natl Acad Sci USA 96:5616–5621CrossRefPubMedGoogle Scholar
  14. Herzing LB, Cook EH Jr, Ledbetter DH (2002) Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11-q13 duplications. Hum Mol Genet 11:1707–1718CrossRefPubMedGoogle Scholar
  15. Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, Schulz TC, Shirayoshi Y, Oshimura M (2000) Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 9:2075–2083PubMedGoogle Scholar
  16. Malzac P, Webber H, Moncla A, Graham JM, Kukolich M, Williams C, Pagon RA, Ramsdell LA, Kishino T, Wagstaff J (1998) Mutation analysis of UBE3A in Angelman syndrome patients. Am J Hum Genet 62:1353–1360PubMedGoogle Scholar
  17. Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H (2001) The HUGO Gene Nomenclature Committee (HGNC). Hum Genet 109:678–680PubMedGoogle Scholar
  18. Rougeulle C, Glatt H, Lalande M (1997) The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 17:14–15PubMedGoogle Scholar
  19. Runte M, Hüttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700CrossRefPubMedGoogle Scholar
  20. Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813PubMedGoogle Scholar
  21. Sun Y, Nicholls RD, Butler MG, Saitoh S, Hainline BE, Palmer CG (1996) Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum Mol Genet 5: 517–524CrossRefPubMedGoogle Scholar
  22. Vu TH, Hoffman AR (1997) Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet 17:12–13PubMedGoogle Scholar
  23. Wirth J, Back E, Hüttenhofer A, Nothwang HG, Lich C, Gross S, Menzel C, Schinzel A, Kioschis P, Tommerup N, Ropers HH, Horsthemke B, Buiting K (2001) A translocation breakpoint cluster disrupts the newly defined 3′ end of the SNURF-SNRPN transcription unit on chromosome 15. Hum Mol Genet 10:201–210CrossRefPubMedGoogle Scholar
  24. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749CrossRefPubMedGoogle Scholar
  25. Yamasaki K, Joh K, Ohta T, Masuzaki H, Ishimaru T, Mukai T, Niikawa N, Ogawa M, Wagstaff J, Kishino T (2003) Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet 12:837–847CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Maren Runte
    • 1
  • Peter M. Kroisel
    • 2
  • Gabriele Gillessen-Kaesbach
    • 1
  • Raymonda Varon
    • 3
  • Denise Horn
    • 4
  • Monika Y. Cohen
    • 5
  • Joseph Wagstaff
    • 6
  • Bernhard Horsthemke
    • 1
  • Karin Buiting
    • 1
  1. 1.Institut für HumangenetikUniversitaetsklinikum EssenEssenGermany
  2. 2.Institut für Medizinische Biologie und HumangenetikUniversitaet GrazGrazAustria
  3. 3.Institut für Humangenetik, CharitéHumboldt Universität BerlinBerlinGermany
  4. 4.Institut für Medizinische Genetik, Charité Humboldt Universität BerlinBerlinGermany
  5. 5.Medizinische GenetikKinderzentrum MünchenMünchenGermany
  6. 6.Departments of Biochemistry and Molecular Genetics and PediatricsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations