Advertisement

Human Genetics

, Volume 114, Issue 1, pp 51–67 | Cite as

Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification

  • Heike Starke
  • Angela Nietzel
  • Anja Weise
  • Anita Heller
  • Kristin Mrasek
  • Britta Belitz
  • Christine Kelbova
  • Marianne Volleth
  • Beate Albrecht
  • Beate Mitulla
  • Ralf Trappe
  • Iris Bartels
  • Sabine Adolph
  • Andreas Dufke
  • Sylke Singer
  • Markus Stumm
  • Rolf-Dieter Wegner
  • Jörg Seidel
  • Angela Schmidt
  • Alma Kuechler
  • Isolde Schreyer
  • Uwe Claussen
  • Ferdinand von Eggeling
  • Thomas LiehrEmail author
Original Investigation

Abstract

Small supernumerary marker chromosomes (SMCs) are present in about 0.05% of the human population. In approximately 30% of SMC carriers (excluding the ~60% SMC derived from one of the acrocentric chromosomes), an abnormal phenotype is observed. The clinical outcome of an SMC is difficult to predict as they can have different phenotypic consequences because of (1) differences in euchromatic DNA-content, (2) different degrees of mosaicism, and/or (3) uniparental disomy (UPD) of the chromosomes homologous to the SMC. Here, we present 35 SMCs, which are derived from all human chromosomes, apart from chromosome 6, as demonstrated by the appropriate molecular cytogenetic approaches, such as centromere-specific multicolor fluoresence in situ hybridization (cenM-FISH), multicolor banding (MCB), and subcentromere-specific multicolor FISH (subcenM-FISH). In nine cases without an aberrant phenotype, neither partial proximal trisomies nor UPD could be detected. Abnormal clinical findings, such as psychomotoric retardation and/or craniofacial dysmorphisms, were associated with seven of the cases in which subcentromeric single-copy probes were proven to be present in three copies. Conversely, in eight cases with a normal phenotype, proximal euchromatic material was detected as partial trisomy. UPD was studied in 12 cases and subsequently detected in two of the cases with SMC (partial UPD 4p and maternal UPD 22 in a der(22)-syndrome patient), indicating that SMC carriers have an enhanced risk for UPD. At present, small proximal trisomies of 1p, 1q, 2p, 6p, 6q, 7q, 9p, and 12q seem to lead to clinical manifestations, whereas partial proximal trisomies of 2q, 3p, 3q, 5q, 7p, 8p, 17p, and 18p may not be associated with significant clinical symptoms. With respect to clinical outcome, a classification of SMCs is proposed that considers molecular genetic and molecular cytogenetic characteristics as demonstrated by presently available methods.

Keywords

Acrocentric Chromosome Partial Trisomy Chromosomal Origin Sister Chromosome Small Supernumerary Marker Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Robert-Pfleger-Stiftung (Bamberg, Germany), Herbert Quandt Stiftung der VARTA, and the EU (ICA2-CT-2000-10012). We thank Dr. Lisa Shaffer (Spokane, USA), Dr. Jasen Anderson (Brisbane, Australia), and Dr. Joris Vermeesch (Leuven, Belgium) for helpful discussions. The continuous support of the Carl Zeiss (Jena, Germany) is gratefully acknowledged.

References

  1. Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714CrossRefPubMedGoogle Scholar
  2. Bridgland L, Footz TK, Kardel MD, Riazi MA, McDermid HE (2003) Three duplicons form a novel chimeric transcription unit in the pericentromeric region of chromosome 22q11. Hum Genet 112:57–61CrossRefPubMedGoogle Scholar
  3. Buckton KE, Spowart G, Newton MS, Evans HJ (1985) Forty four probands with an additional "marker" chromosome. Hum Genet 69:353–370PubMedGoogle Scholar
  4. Callen DF, Eyre H, Yip MY, Freemantle J, Haan EA (1992) Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am J Med Genet 43:709–715PubMedGoogle Scholar
  5. Callen DF, Eyre H, Fang YY, Guan XY, Veleba A, Martin NJ, McGill J, Haan EA (1999) Origins of accessory small ring marker chromosomes derived from chromosome 1. J Med Genet 36:847–853PubMedGoogle Scholar
  6. Chudoba I, Franke Y, Senger G, Sauerbrei G, Demuth S, Beensen V, Neumann A, Hansmann I, Claussen U (1999) Maternal UPD 20 in a hyperactive child with severe growth retardation. Eur J Hum Genet 7:533–540PubMedGoogle Scholar
  7. Crolla JA (1998) FISH and molecular studies of autosomal supernumerary marker chromosomes excluding those derived from chromosome 15. II. Review of the literature. Am J Med Genet 75:367–381CrossRefPubMedGoogle Scholar
  8. Crolla JA, Long F, Rivera H, Dennis NR (1998) FISH and molecular study of autosomal supernumerary marker chromosomes excluding those derived from chromosomes 15 and 22. I. Results of 26 new cases. Am J Med Genet 75:355–366CrossRefPubMedGoogle Scholar
  9. Cunniff C (2002) Turner syndrome. Adolesc Med 13:359–366PubMedGoogle Scholar
  10. D'Amato Sizonenko L, Ng D, Oei P, Winship I (2002) Supernumerary marker chromosomes 5: confirmation of a critical region and resultant phenotype. Am J Med Genet 111:19–26CrossRefPubMedGoogle Scholar
  11. Eggeling F von, Hoppe C, Bartz U, Starke H, Houge G, Claussen U, Ernst G, Kotzot D, Liehr T (2002) Maternal uniparental disomy 12 in a healthy girl with a 47,XX,+der(12)(:p11→q11:)/46,XX karyotype. J Med Genet 39:519–521CrossRefPubMedGoogle Scholar
  12. Fang YY, Eyre HJ, Bohlander SK, Estop A, McPherson E, Trager T, Riess O, Callen DF (1995) Mechanisms of small ring formation suggested by the molecular characterization of two small accessory ring chromosomes derived from chromosome 4. Am J Hum Genet 57:1137–1142PubMedGoogle Scholar
  13. Fryns JP, Petit P, Heffinck R, Berghe H van den (1983) Mosaic pericentric inversion of chromosome 2. J Genet Hum 31:157–161PubMedGoogle Scholar
  14. Funke B, Edelmann L, McCain N, Pandita RK, Ferreira J, Merscher S, Zohouri M, Cannizzaro L, Shanske A, Morrow BE (1999) Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11. Am J Hum Genet 64:747–758PubMedGoogle Scholar
  15. Giardino D, Bettio D, Gottardi G, Rizzi N, Pierluigi M, Perfumo C, Cali A, Dagna Bricarelli F, Larizza L (1999) FISH characterization of two supernumerary r(1) associated with distinct clinical phenotypes. Am J Med Genet 84:377–380CrossRefPubMedGoogle Scholar
  16. Giardino D, Finelli P, Russo S, Gottardi G, Rodeschini O, Atza MG, Natacci F, Larizza L (2002) Small familial supernumerary ring chromosome 2: FISH characterization and genotype-phenotype correlation. Am J Med Genet 111:319–323CrossRefPubMedGoogle Scholar
  17. Guy J, Hearn T, Crosier M, Mudge J, Viggiano L, Koczan D, Thiesen HJ, Bailey JA, Horvath JE, Eichler EE, Earthrowl ME, Deloukas P, French L, Rogers J, Bentley D, Jackson MS (2003) Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10p. Genome Res 13:159–172CrossRefPubMedGoogle Scholar
  18. Haddad BR, Schröck E, Meck J, Cowan J, Young H, Ferguson-Smith MA, Manoir S du, Ried T (1998) Identification of de novo chromosomal markers and derivatives by spectral karyotyping. Hum Genet 103:619–625CrossRefPubMedGoogle Scholar
  19. Henegariu O, Bray-Ward P, Artan S, Vance GH, Qumsyieh M, Ward DC (2001) Small marker chromosome identification in metaphase and interphase using centromeric multiplex fish (CM-FISH). Lab Invest 81:475–481PubMedGoogle Scholar
  20. Horvath JE, Gulden CL, Bailey JA, Yohn C, McPherson JD, Prescott A, Roe BA, De Jong PJ, Ventura M, Misceo D, Archidiacono N, Zhao S, Schwartz S, Rocchi M, Eichler EE (2003) Using a pericentromeric interspersed repeat to recapitulate the phylogeny and expansion of human centromeric segmental duplications. Mol Biol Evol (in press)Google Scholar
  21. James RS, Temple IK, Dennis NR, Crolla JA (1995) A search for uniparental disomy in carriers of supernumerary marker chromosomes. Eur J Hum Genet 3:21–26PubMedGoogle Scholar
  22. Knight SJ, Horsley SW, Regan R, Lawrie NM, Maher EJ, Cardy DL, Flint J, Kearney L (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5:1–8Google Scholar
  23. Kotzot D (2002) Review and meta-analysis of systematic searches for uniparental disomy (UPD) other than UPD 15. Am J Med Genet 111:366–375CrossRefPubMedGoogle Scholar
  24. Langer S, Fauth C, Rocchi M, Murken J, Speicher MR (2001) AcroM fluorescent in situ hybridization analyses of marker chromosomes. Hum Genet 109:152–158CrossRefPubMedGoogle Scholar
  25. Ledbetter DH, Engel E (1995) Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet 4:1757–1764Google Scholar
  26. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673CrossRefPubMedGoogle Scholar
  27. Liehr T, Claussen U (2002) Review: multicolor-FISH approaches for the characterization of human chromosomes in clinical genetics and tumor cytogenetics. Curr Genomics 3:213–235Google Scholar
  28. Liehr T, Pfeiffer RA, Trautmann U (1992) Typical and partial cat eye syndrome: identification of the marker chromosome by FISH. Clin Genet 42:91–96PubMedGoogle Scholar
  29. Liehr T, Thoma K, Kammler K, Gehring C, Ekici A, Bathke KD, Grehl H, Rautenstrauss B (1995) Direct preparation of uncultured EDTA-treated or heparinized blood for interphase FISH analysis. Appl Cytogenet 21:185–188Google Scholar
  30. Liehr T, Rautenstrauss B, Grehl H, Bathke KD, Ekici A, Rauch A, Rott HD (1996) Mosaicism for the Charcot-Marie-Tooth disease type 1A duplication suggests somatic reversion. Hum Genet 98:22–28Google Scholar
  31. Liehr T, Beensen V, Hauschild R, Ziegler M, Hartmann I, Starke H, Heller A, Kähler C, Schmidt M, Reiber W, Hesse M, Claussen U (2001) Pitfalls of rapid prenatal diagnosis using the interphase nucleus. Prenat Diagn 21:419–421CrossRefPubMedGoogle Scholar
  32. Liehr T, Nietzel A, Rocchi M, Heller A, Starke H, Claussen U, Eggeling F von (2002a) Centromere-specific multicolor-FISH (cenM-FISH) followed by analysis for uniparental disomy—a useful tool in prenatal diagnosis. In: Macek M (ed) Early prenatal diagnosis, fetal cells and DNA in the mother—present state and perpectives. Karolinum Press, Prag, pp 293–300Google Scholar
  33. Liehr T, Nietzel A, Starke H, Heller A, Weise A, Mrasek K, Claussen U (2002b) Characterization of small human marker chromosomes by centromere-specific multicolor-FISH (cenM-FISH) and high resolution multicolor banding (MCB). ECA Newsletter 10:3–8Google Scholar
  34. Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T (2001) Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93:242–248CrossRefPubMedGoogle Scholar
  35. Müller-Navia J, Nebel A, Oehler D, Theile U, Zabel B, Schleiermacher E (1996) Microdissection and DOP-PCR-based reverse chromosome painting as a fast and reliable strategy in the analysis of various structural chromosome abnormalities. Prenat Diagn 16:915–922PubMedGoogle Scholar
  36. National Institutes of Health and Institute of Molecular Medicine Collaboration (1996) A complete set of human telomeric probes and their clinical application. Nat Genet 14:86–89PubMedGoogle Scholar
  37. Nietzel A, Rocchi M, Starke H, Heller A, Fiedler W, Wlodarska I, Loncarevic IF, Beensen V, Claussen U, Liehr T (2001) A new multicolor-FISH approach for the characterization of marker chromosomes: centromere-specific multicolor-FISH (cenM-FISH). Hum Genet 108:199–204PubMedGoogle Scholar
  38. Nietzel A, Heller A, Starke H, Liehr T (2002) Centromere-specific multicolor-FISH (cenM-FISH). In: Rautenstrauß B, Liehr T (eds) FISH technology, a Springer laboratory manual. Springer, Berlin Heidelberg New York, pp 425–431Google Scholar
  39. Nietzel A, Albrecht B, Starke H, Heller A, Gillessen-Kaesbach G, Claussen U, Liehr T (2003) Partial hexasomy 15pter→15q13 including SNRPN and D15S10: first molecular cytogenetically proven case report. J Med Genet 40 E28:1–4Google Scholar
  40. Ostroverkhova NV, Nazarenko SA, Rubtsov NB, Nazarenko LP, Bunina EN (1999) Characterization of a small supernumerary ring marker derived from chromosome 2 by forward and reverse chromosome painting. Am J Med Genet 87:217–220CrossRefPubMedGoogle Scholar
  41. Queisser-Luft A, Stolz G, Wiesel A, Schlaefer K, Spranger J (2002) Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990–1998). Arch Gynecol Obstet 266:163–167PubMedGoogle Scholar
  42. Röthlisberger B, Chrzanowska K, Balmer D, Riegel M, Schinzel A (2000) A supernumerary marker chromosome originating from two different regions of chromosome 18. J Med Genet 37:121–124CrossRefPubMedGoogle Scholar
  43. Salafsky IS, MacGregor SN, Claussen U, Eggeling F von (2001) Maternal UPD 20 in an infant from a pregnancy with mosaic trisomy 20. Prenat Diagn 21:860–863CrossRefPubMedGoogle Scholar
  44. Senger G, Chudoba I, Plesch A (1998) Multicolor-FISH—the identification of chromosome aberrations by 24 colors. Bioforum 9:499–503Google Scholar
  45. Shaffer LG, Agan N, Goldberg JD, Ledbetter DH, Longshore JW, Cassidy SB (2001) American College of Medical Genetics statement of diagnostic testing for uniparental disomy. Genet Med 3:206–211PubMedGoogle Scholar
  46. Smith MM (2002) Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol 14:279–285CrossRefPubMedGoogle Scholar
  47. Stankiewicz P, Bocian E, Jakubow-Durska K, Obersztyn E, Lato E, Starke H, Mroczek K, Mazurczak T (2000) Identification of supernumerary marker chromosomes derived from chromosomes 5, 6, 19, and 20 using FISH. J Med Genet 37:114–120CrossRefPubMedGoogle Scholar
  48. Stankiewicz P, Parka SS, Holder SE, Waters CS, Palmer RW, Berend SA, Shaffer LG, Potocki L, Lupski JR (2001) Trisomy 17p10-p12 resulting from a supernumerary marker chromosome derived from chromosome 17: molecular analysis and delineation of the phenotype. Clin Genet 60:336–344CrossRefPubMedGoogle Scholar
  49. Starke H, Schreyer I, Kähler C, Fiedler W, Beensen V, Heller A, Nietzel A, Claussen U, Liehr T (1999) Molecular cytogenetic characterization of a prenatally detected supernumerary minute marker chromosome 8. Prenat Diagn 19:1169–1174CrossRefPubMedGoogle Scholar
  50. Starke H, Raida M, Trifonov V, Clement JH, Loncarevic IF, Heller A, Bleck C, Nietzel A, Rubtsov N, Claussen U, Liehr T (2001) Molecular cytogenetic characterization of an acquired minute supernumerary marker chromosome as the sole abnormality in a case clinically diagnosed as atypical Philadelphia-negative chronic myelogenous leukaemia. Br J Haematol 113:435–438CrossRefPubMedGoogle Scholar
  51. Starke H, Seidel J, Henn W, Reichardt S, Volleth M, Stumm M, Behrend C, Sandig KR, Kelbova C, Senger G, Albrecht B, Hansmann I, Heller A, Claussen U, Liehr T (2002) Homologous sequences at human chromosome 9 bands p12 and q13–21.1 are involved in different patterns of pericentric rearrangements. Eur J Hum Genet 10:790–800CrossRefPubMedGoogle Scholar
  52. Starke H, Mitulla B, Nietzel A, Heller A, Beensen V, Grosswendt G, Claussen U, Eggeling F von, Liehr T (2003) First patient with trisomy 21 accompanied by an additional der(4)(:p11→q11:) plus partial uniparental disomy 4p15–16. Am J Med Genet 116A:26–30CrossRefPubMedGoogle Scholar
  53. Sumption ND, Barber JC (2001) A transmitted deletion of 2q13 to 2q14.1 causes no phenotypic abnormalities. J Med Genet 38:125–127CrossRefPubMedGoogle Scholar
  54. Trifonov V, Seidel J, Starke H, Prechtel M, Beensen V, Ziegler M, Hartmann I, Heller A, Nietzel A, Claussen U, Liehr T (2003) Enlarged chromosome 13 p-arm hiding a cryptic partial trisomy 6p22.2-pter. Prenat Diagn 23:427–430Google Scholar
  55. Velagaleti GV, Jalal SM, Kukolich MK, Lockhart LH, Tonk VS (2002) De novo supernumerary ring chromosome 7: first report of a non-mosaic patient and review of the literature. Clin Genet 61:202–206CrossRefPubMedGoogle Scholar
  56. Verma RS, Babu A (1989) Human chromosomes—manual of basic technologies, 4th edn. Pergamon, New YorkGoogle Scholar
  57. Villa N, Riva P, Colombo D, Sala E, Mariani S, Zorloni C, Crosti F, Dalpra L (2001) Identification of a small supernumerary marker chromosome, r(2)(p10q11.2), and the problem of determining prognosis. Prenat Diagn 21:801–805CrossRefPubMedGoogle Scholar
  58. Weise A, Starke H, Heller A, Tonnies H, Volleth M, Stumm M, Gabriele S, Nietzel A, Claussen U, Liehr T (2002) Chromosome 2 aberrations in clinical cases characterised by high resolution multicolour banding and region specific FISH probes. J Med Genet 39:434–439CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Heike Starke
    • 1
  • Angela Nietzel
    • 1
  • Anja Weise
    • 1
  • Anita Heller
    • 1
  • Kristin Mrasek
    • 1
  • Britta Belitz
    • 2
  • Christine Kelbova
    • 3
  • Marianne Volleth
    • 4
  • Beate Albrecht
    • 5
  • Beate Mitulla
    • 6
  • Ralf Trappe
    • 7
  • Iris Bartels
    • 7
  • Sabine Adolph
    • 8
  • Andreas Dufke
    • 9
  • Sylke Singer
    • 9
  • Markus Stumm
    • 10
  • Rolf-Dieter Wegner
    • 10
  • Jörg Seidel
    • 11
  • Angela Schmidt
    • 12
  • Alma Kuechler
    • 1
    • 13
  • Isolde Schreyer
    • 1
  • Uwe Claussen
    • 1
  • Ferdinand von Eggeling
    • 1
  • Thomas Liehr
    • 1
    Email author
  1. 1.Institut für Humangenetik und AnthropologieJenaGermany
  2. 2.Praxis für Medizinische GenetikBerlinGermany
  3. 3.Praxis für Medizinische GenetikCottbusGermany
  4. 4.Institut für HumangenetikMagdeburgGermany
  5. 5.Institut für HumangenetikEssenGermany
  6. 6.Zentralklinikum Suhl, gGmbHSuhlGermany
  7. 7.Institut für HumangenetikZentrum für Hygiene und HumangenetikGöttingenGermany
  8. 8.OlgahospitalInstitut für Klinische GenetikStuttgartGermany
  9. 9.Institut für Humangenetik und AnthropologieTübingenGermany
  10. 10.Partnerschaft für Medizinische GenetikBerlinGermany
  11. 11.Klinik für Kinder- und JugendmedizinJenaGermany
  12. 12.Praxis für HumangenetikHannoverGermany
  13. 13.Klinik für StrahlentherapieJenaGermany

Personalised recommendations