Advertisement

Transcriptomic and metabolomic analyses reveal several critical metabolic pathways and candidate genes involved in resin biosynthesis in Pinus massoniana

  • Qingsong Bai
  • Boxiang He
  • Yanling Cai
  • Huiming Lian
  • Qian ZhangEmail author
Original Article
  • 78 Downloads

Abstract

Pine resin, which typically consists of terpenoids, is a natural product used in various industrial applications. Oleoresin can be obtained from the xylem tissue by wounding the stem bark. Pinus massoniana (masson pine) is an important resin-tapping tree species that originated in southern China. Masson pines with different genetic backgrounds typically have different resin-yielding capacities (RYCs). However, the mechanisms underlying high resin yield in masson pines are unclear. The aim of this study was to identify the possible genetic regulation pathways and functional genes that influence the resin yield. In this study, we conducted transcriptomic and metabolomic studies of masson pine secondary xylem with high, medium, and low RYCs. A total of 230,068 unigenes and 3894 metabolites were identified from the tissue of the secondary xylem. Several differentially expressed regulation factors, including WRKY, bHLH, and ERF, and functional genes such as PKc and LRR-RLKs, were identified among these masson pines. The Kyoto Encyclopedia of Genes and Genomes pathways were mainly focused on diterpenoid biosynthesis, plant hormone signal transduction, and ABC transporters. Furthermore, integration of the transcriptomic and metabolomic data indicated that the PKc- and LRR-RLK-related regulatory and metabolic pathways may play critical roles in the biosynthesis of terpenoids. These above results improve our understanding of the biosynthesis mechanism of oleoresin in P. massoniana and facilitate further research work into the functional analysis of these candidate genes.

Keywords

Pinus massoniana Resin-yielding Transcriptomic Metabolomic Biosynthesis of terpenoid Candidate gene 

Notes

Acknowledgements

We would like to acknowledge the financial support provided by the National Natural Science Foundation of China (No. 31800553).

Authors’ contributions

BQ and ZQ designed the study. BQ took the experiments, performed the data analyses, and wrote the manuscript. HB, CY, LH, and ZQ collected the materials and revised the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2019_1624_MOESM1_ESM.docx (1004 kb)
Supplementary material 1 (DOCX 1004 kb)

References

  1. Bai Q, Cai Y, He B, Liu W, Pan Q, Zhang Q (2019) Core set construction and association analysis of Pinus massoniana from Guangdong province in southern China using SLAF-seq. Sci Rep 9(1):13157PubMedPubMedCentralCrossRefGoogle Scholar
  2. De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill JD, Goossens A (2011) APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66(6):1053–1065PubMedCrossRefGoogle Scholar
  3. de Oliveira Junkes CF, de Araújo Júnior AT, de Lima JC, de Costa F, Füller T, de Almeida MR, Neis FA, da Silva Rodrigues-Corrêa KC, Fett JP, Fett-Neto AG (2019a) Resin tapping transcriptome in adult slash pine (Pinus elliottii var. elliottii). Industrial Crops and Products 139:111545CrossRefGoogle Scholar
  4. de Oliveira Junkes CF, Duz JVV, Kerber MR, Wieczorek J, Galvan JL, Fett JP, Fett-Neto AG (2019b) Resinosis of young slash pine (Pinus elliottii Engelm.) as a tool for resin stimulant paste development and high yield individual selection. Ind Crops Prod 135:179–187CrossRefGoogle Scholar
  5. Dickinson E, Rusilowicz MJ, Dickinson M, Charlton AJ, Bechtold U, Mullineaux PM, Wilson J (2018) Integrating transcriptomic techniques and k-means clustering in metabolomics to identify markers of abiotic and biotic stress in Medicago truncatula. Metabolomics 14(10):126PubMedPubMedCentralCrossRefGoogle Scholar
  6. Fan F, Cui B, Zhang T, Qiao G, Ding G, Wen X (2014) The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deficiency. PLoS ONE 9(8):e105068PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fukushima A, Iwasa M, Nakabayashi R, Kobayashi M, Nishizawa T, Okazaki Y, Saito K, Kusano M (2017) Effects of combined low glutathione with mild oxidative and low phosphorus stress on the metabolism of Arabidopsis thaliana. Front Plant Sci 8:1464PubMedPubMedCentralCrossRefGoogle Scholar
  8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644PubMedPubMedCentralCrossRefGoogle Scholar
  9. Gu L, Zhang Z-y, Quan H, Li M-j, Zhao F-y, Xu Y-j, Liu J, Sai M, W-l Zheng, Lan X-z (2018) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in rotenoid biosynthesis in the medicinal plant Mirabilis himalaica. Mol Genet Genomics 293(3):635–647PubMedCrossRefGoogle Scholar
  10. Gutierrez E, Garcia-Villaraco A, Lucas JA, Gradillas A, Javier Gutierrez-Manero F, Ramos-Solano B (2017) Transcriptomics, targeted metabolomics and gene expression of blackberry leaves and fruits indicate flavonoid metabolic flux from leaf to red fruit. Front Plant Sci 8:472PubMedPubMedCentralCrossRefGoogle Scholar
  11. Guzman F, Kulcheski FR, Turchetto-Zolet AC, Margis R (2014) De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway. Plant Sci 229:238–246PubMedCrossRefGoogle Scholar
  12. He B, Lian H, Zeng L, Ruan Z, Huang P (1999) A study on pine resin chemical composition and its geographic variation of high resin masson pine superior tree. Guangdong ForSci Technol 15:1–7Google Scholar
  13. Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13(5):1095–1107PubMedPubMedCentralGoogle Scholar
  14. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. NAR 28(1):27–30PubMedCrossRefGoogle Scholar
  15. Karanikas C, Walker V, Scaltsoyiannes A, Comte G, Bertrand C (2010) High vs. low yielding oleoresin Pinus halepensis Mill. trees GC terpenoids profiling as diagnostic tool. Ann For Sci 67(4):412CrossRefGoogle Scholar
  16. Keeling CI, Bohlmann J (2006a) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170(4):657–675PubMedCrossRefGoogle Scholar
  17. Keeling CI, Bohlmann J (2006b) Diterpene resin acids in conifers. Phytochemistry 67(22):2415–2423PubMedCrossRefGoogle Scholar
  18. Lardi M, Liu Y, Giudice G, Ahrens CH, Zamboni N, Pessi G (2018) Metabolomics and transcriptomics identify multiple downstream targets of Paraburkholderia phymatum sigma(54) during symbiosis with Phaseolus vulgaris. Int J Mol Sci 19(4):1049PubMedCentralCrossRefPubMedGoogle Scholar
  19. Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K (2017) Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. JExB 68(17):4929–4938Google Scholar
  20. Liu Q, Zhou Z, Wei Y, Shen D, Feng Z, Hong S (2015a) Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of Masson pine (Pinus massoniana Lamb) by transcriptomic analysis. PLoS ONE 10(7):e0132624PubMedPubMedCentralCrossRefGoogle Scholar
  21. Liu Z, Zhang Y, Wang J, Li P, Zhao C, Chen Y, Bi Y (2015b) Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci 238:64–72PubMedCrossRefGoogle Scholar
  22. Liu Q, Wei Y, Xu L, Hao Y, Chen X, Zhou Z (2017) Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in masson Pine (Pinus massoniana Lamb.). Sci Rep 7:4693PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the Amorpha-4,11-diene synthase gene, a key gene of Artemisinin biosynthesis. PCPhy 50(12):2146–2161Google Scholar
  24. Ma Y, Yuan L, Wu B, Xe Li, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. JExB 63(7):2809–2823Google Scholar
  25. Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793PubMedCrossRefGoogle Scholar
  26. Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137(1):369–382PubMedPubMedCentralCrossRefGoogle Scholar
  27. Nieuwenhuizen NJ, Chen X, Wang MY, Matich AJ, Perez RL, Allan AC, Green SA, Atkinson RG (2015) Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol 167(4):1243PubMedPubMedCentralCrossRefGoogle Scholar
  28. Pazouki L, Niinemets U (2016) Multi-substrate terpene synthases: their occurrence and physiological significance. Front Plant Sci 7:1019PubMedPubMedCentralCrossRefGoogle Scholar
  29. Peng SL, Li QF, Li D, Wang ZF, Wang DP (2003) Genetic diversity of Pinus massoniana revealed by RAPD markers. Silvae Genet 52(2):60–63Google Scholar
  30. Reddy VA, Wang Q, Dhar N, Kumar N, Venkatesh PN, Rajan C, Panicker D, Sridhar V, Mao H-Z, Sarojam R (2017) Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU). Plant Biotechnol J 15(9):1105–1119PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rivas-Ubach A, Sardans J, Antonio Hodar J, Garcia-Porta J, Guenther A, Pasa-Tolic L, Oravec M, Urban O, Penuelas J (2017) Close and distant: contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecol Evol 7(21):8976–8988PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ro D-K, Bohlmann J (2006) Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67(15):1572–1578PubMedCrossRefGoogle Scholar
  33. Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan Y-L (2017) Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. JExB 68(15):4263–4279Google Scholar
  34. Savoi S, Wong DCJ, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD (2016) Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L). BMC Plant Biol 16:67PubMedPubMedCentralCrossRefGoogle Scholar
  35. Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P (2011) Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Mol Biol 77(6):577–590PubMedPubMedCentralCrossRefGoogle Scholar
  36. Shen S-L, Yin X-R, Zhang B, Xie X-L, Jiang Q, Grierson D, Chen K-S (2016) CitAP210 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange. JExB 67(14):4105–4115Google Scholar
  37. Song Y, Yang C, Gao S, Zhang W, Li L, Kuai B (2014) Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant 7(12):1776–1787PubMedPubMedCentralCrossRefGoogle Scholar
  38. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550PubMedCrossRefGoogle Scholar
  39. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304PubMedCrossRefGoogle Scholar
  40. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. NAR 40(15):e115PubMedCrossRefGoogle Scholar
  41. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138PubMedCrossRefGoogle Scholar
  42. Wei Y, Liu Q, Dong H, Zhou Z, Hao Y, Chen X, Xu L (2016) Selection of reference genes for real-time quantitative PCR in Pinus massoniana post nematode inoculation. PLoS ONE 11(1):e0147224PubMedPubMedCentralCrossRefGoogle Scholar
  43. Wen L, Shi R, Wang J, Zhao Y, Zhang H, Ling X, Xiong Z (2018) Transcriptome analyses to reveal genes involved in terpene biosynthesis in resin producing pine tree Pinus kesiya var langbianensis. Bioresources 13(1):1852–1871CrossRefGoogle Scholar
  44. Westbrook JW, Resende MFR Jr, Munoz P, Walker AR, Wegrzyn JL, Nelson CD, Neale DB, Kirst M, Huber DA, Gezan SA, Peter GF, Davis JM (2013) Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytol 199(1):89–100PubMedCrossRefGoogle Scholar
  45. Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135(1):507–515PubMedPubMedCentralCrossRefGoogle Scholar
  46. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14PubMedPubMedCentralCrossRefGoogle Scholar
  47. Zeng LH, Zhang Q, He BX, Lian HM, Cai YL, Wang YS, Luo M (2013) Age trends in genetic parameters for growth and resin-yielding capacity in masson pine. Silvae Genet 62(1–2):7–18CrossRefGoogle Scholar
  48. Zhang Y, Chu D-y, G-q Jin, Zhou Z-c (2010) Relationship between hybrid performance and genetic distances among Pinus massoniana clones based on ISSR molecular marker. For Res 23(2):215–220Google Scholar
  49. Zhang Y, Yang Q, Zhou Z, Jin G (2013) Divergence among masson pine parents revealed by geographical origins and SSR markers and their relationships with progeny performance. New For 44(3):341–355CrossRefGoogle Scholar
  50. Zhang S, Zhang L, Tai Y, Wang X, Ho C-T, Wan X (2018) Gene discovery of characteristic metabolic pathways in the tea plant (Camellia sinensis) using ‘omics’-based network approaches: a future perspective. Front Plant Sci 9:480PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qingsong Bai
    • 1
  • Boxiang He
    • 1
  • Yanling Cai
    • 1
  • Huiming Lian
    • 1
  • Qian Zhang
    • 1
    Email author
  1. 1.Guangdong Provincial Key Laboratory of Silviculture, Protection and UtilizationGuangdong Academy of ForestryGuangzhouChina

Personalised recommendations