Advertisement

Molecular Genetics and Genomics

, Volume 295, Issue 1, pp 1–12 | Cite as

Single nucleotide polymorphisms in piRNA-pathway genes: an insight into genetic determinants of human diseases

  • Jyoti Roy
  • Kalyani Anand
  • Swati Mohapatra
  • Rojalin Nayak
  • Trisha Chattopadhyay
  • Bibekanand MallickEmail author
Review
  • 255 Downloads

Abstract

With the development of advanced high-throughput genotyping technologies, there has been a dramatic improvement in identifying millions of single nucleotide polymorphisms (SNPs) across the human genome. SNPs located within the genes involved in biogenesis and function of small regulatory RNAs such as PIWI-interacting RNAs (piRNAs) can alter physiological processes by affecting gene expression. The genetic variations within PIWI genes and their associated factors such as TDRDs, EIFs, and KIF17 etc. have shown significant association with dreadful human diseases such as Alzheimer’s disease, cancer, and schizophrenia. In this review, we have attempted to survey and summarize the association of all the genetic variants reported in different piRNA-pathway genes with diseases and discern their potential in clinical manifestations which will serve as a cornerstone for subsequent studies to decrypt the molecular mechanisms of SNPs in developing diseases.

Keywords

piRNA PIWIL SNPs Genetic variation Diseases 

Notes

Acknowledgements

This work was supported by Department of Biotechnology, Govt. of India (BT/PR21128/MED/30/1756/2016), awarded to B.M.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

References

  1. Aizer A, Kafri P et al (2013) The P body protein Dcp1a is hyper-phosphorylated during mitosis. PLoS One 8(1):e49783.  https://doi.org/10.1371/journal.pone.0049783 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bak CW, Yoon TK et al (2011) Functions of PIWI proteins in spermatogenesis. Clin Exp Reprod Med 38(2):61–67.  https://doi.org/10.5653/cerm.2011.38.2.61 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bermisheva MA, Takhirova ZR et al (2018) MicroRNA biogenesis pathway gene polymorphisms are associated with breast cancer risk. Russian J Genet 54(5):568–575.  https://doi.org/10.1134/s1022795418040051 CrossRefGoogle Scholar
  4. Brown EL, Below JE et al (2015) Genome-Wide Association Study of Staphylococcus aureus carriage in a community-based sample of Mexican-Americans in Starr County, Texas. PLoS One 10(11):e0142130.  https://doi.org/10.1371/journal.pone.0142130 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bruno AE, Li L et al (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genom 13:44.  https://doi.org/10.1186/1471-2164-13-44 CrossRefGoogle Scholar
  6. Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8(12):e1002822.  https://doi.org/10.1371/journal.pcbi.1002822 CrossRefPubMedGoogle Scholar
  7. Capasso M, Diskin SJ et al (2013) Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility. Carcinogenesis 34(3):605–611.  https://doi.org/10.1093/carcin/bgs380 CrossRefPubMedGoogle Scholar
  8. Chen J, Qin Z et al (2013) Genetic variants in RAN, DICER and HIWI of microRNA biogenesis genes and risk of cervical carcinoma in a Chinese population. Chin J Cancer Res 25(5):565–571.  https://doi.org/10.3978/j.issn.1000-9604.2013.10.03 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chiang PY, Shen YF et al (2013) Phosphorylation of mRNA decapping protein Dcp1a by the ERK signaling pathway during early differentiation of 3T3-L1 preadipocytes. PLoS One 8(4):e61697.  https://doi.org/10.1371/journal.pone.0061697 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Collins FS, Morgan M et al (2003) The human genome project: lessons from large-scale biology. Science 300(5617):286–290.  https://doi.org/10.1126/science.1084564 CrossRefPubMedGoogle Scholar
  11. Cox DN, Chao A et al (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23):3715–3727CrossRefGoogle Scholar
  12. de Hoon M, Shin JW et al (2015) Paradigm shifts in genomics through the FANTOM projects. Mamm Genome 26(9–10):391–402.  https://doi.org/10.1007/s00335-015-9593-8(Official journal of the International Mammalian Genome Society) CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dehghani M, Lasko P (2016) C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning. Dev Genes Evol 226(6):401–412.  https://doi.org/10.1007/s00427-016-0560-5 CrossRefPubMedGoogle Scholar
  14. Djebali S, Davis CA et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108.  https://doi.org/10.1038/nature11233 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dunna NR, Naushad SM et al (2014) Association of thymidylate synthase 5′-UTR 28 bp tandem repeat and serine hydroxymethyltransferase C1420T polymorphisms with susceptibility to acute leukemia. Asian Pac J Cancer Prev APJCP 15(4):1719–1723CrossRefGoogle Scholar
  16. Dykes IM, Emanueli C (2017) Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genom Proteom Bioinform 15(3):177–186.  https://doi.org/10.1016/j.gpb.2016.12.005 CrossRefGoogle Scholar
  17. Forbes SA, Bhamra G et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet.  https://doi.org/10.1002/0471142905.hg1011s57 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gu A, Ji G et al (2010) Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum Reprod 25(12):2955–2961.  https://doi.org/10.1093/humrep/deq274 CrossRefPubMedGoogle Scholar
  19. Guo Y, Song Y et al (2018) Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle 17(2):162–173.  https://doi.org/10.1080/15384101.2017.1361066 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hong KW, Lim JE et al (2011) A regulatory SNP in AKAP13 is associated with blood pressure in Koreans. J Hum Genet 56(3):205–210.  https://doi.org/10.1038/jhg.2010.167 CrossRefPubMedGoogle Scholar
  21. Hwang JY, Kim YJ et al (2016) Meta analysis identifies a novel susceptibility locus associated with heel bone strength in the Korean population. Bone 84:47–51.  https://doi.org/10.1016/j.bone.2015.12.005 CrossRefPubMedGoogle Scholar
  22. Juliano C, Wang J et al (2011) Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 45:447–469.  https://doi.org/10.1146/annurev-genet-110410-132541 CrossRefPubMedGoogle Scholar
  23. Kaikkonen MU, Lam MT et al (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440.  https://doi.org/10.1093/cvr/cvr097 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kamaliyan Z, Pouriamanesh S et al (2018) Investigation of piwi-interacting RNA pathway genes role in idiopathic non-obstructive azoospermia. Sci Rep 8(1):142.  https://doi.org/10.1038/s41598-017-17518-4 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kotaja N, Lin H et al (2006) Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. J Cell Sci 119(Pt 13):2819–2825.  https://doi.org/10.1242/jcs.03022 CrossRefPubMedGoogle Scholar
  26. Ku HY, Lin H (2014) PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 1(2):205–218.  https://doi.org/10.1093/nsr/nwu014 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lee YH, Song GG (2015) Genome-wide pathway analysis of a genome-wide association study on Alzheimer’s disease. Neurol Sci 36(1):53–59.  https://doi.org/10.1007/s10072-014-1885-3(Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology) CrossRefPubMedGoogle Scholar
  28. Li L, Sun R et al (2013) Association between polymorphisms in long non-coding RNA PRNCR28 in 8q24 and risk of colorectal cancer. J Exp Clin Cancer Res 32:104.  https://doi.org/10.1186/1756-9966-32-104 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124(12):2463–2476PubMedGoogle Scholar
  30. Liu K, Chen C et al (2010) Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc Natl Acad Sci USA 107(43):18398–18403.  https://doi.org/10.1073/pnas.1013106107 CrossRefPubMedGoogle Scholar
  31. Liu L, An J et al (2013) Potentially functional genetic variants in microRNA processing genes and risk of HBV-related hepatocellular carcinoma. Mol Carcinog 52(Suppl 1):E148–E154.  https://doi.org/10.1002/mc.22062 CrossRefPubMedGoogle Scholar
  32. Liu K, Lei Z et al (2016) Impact of a Eukaryotic Translation Initiation Factor 3a Polymorphism on Susceptibility to Gastric Cancer. Med Princ Pract 25(5):461–465.  https://doi.org/10.1159/000447741(International Journal of the Kuwait University, Health Science Centre) CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ma H, Yuan H et al (2012) Genetic variations in key microRNA processing genes and risk of head and neck cancer: a case-control study in Chinese population. PLoS One 7(10):e47544.  https://doi.org/10.1371/journal.pone.0047544 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mailman MD, Feolo M et al (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39(10):1181–1186.  https://doi.org/10.1038/ng1007-1181 CrossRefPubMedPubMedCentralGoogle Scholar
  35. McGeachie M, Ramoni RL et al (2009) Integrative predictive model of coronary artery calcification in atherosclerosis. Circulation 120(24):2448–2454.  https://doi.org/10.1161/CIRCULATIONAHA.109.865501 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ng KW, Anderson C et al (2016) Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 15:5.  https://doi.org/10.1186/s12943-016-0491-9 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nguyen LB, Diskin SJ et al (2011) Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility Loci. PLoS Genet 7(3):e1002026.  https://doi.org/10.1371/journal.pgen.1002026 CrossRefPubMedCentralGoogle Scholar
  38. Ning S, Zhao Z et al (2014) LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs. BMC Bioinform 15:152.  https://doi.org/10.1186/1471-2105-15-152 CrossRefGoogle Scholar
  39. Noguchi S, Mori T et al (2013) MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas. Vet Compar Oncol 11(2):113–123.  https://doi.org/10.1002/vco.306 CrossRefGoogle Scholar
  40. Olson JE, Wang X et al (2010) Variation in genes required for normal mitosis and risk of breast cancer. Breast Cancer Res Treat 119(2):423–430.  https://doi.org/10.1007/s10549-009-0386-1 CrossRefPubMedGoogle Scholar
  41. Rintisch C, Heinig M et al (2014) Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res 24(6):942–953.  https://doi.org/10.1101/gr.169029.113 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rosenthal SL, Wang X et al (2012) Beta-amyloid toxicity modifier genes and the risk of Alzheimer’s disease. Am J Neurodegener Dis 1(2):191–198PubMedPubMedCentralGoogle Scholar
  43. Roshandel D, Thomson W et al (2011) A validation of the first genome-wide association study of calcaneus ultrasound parameters in the European Male Ageing Study. BMC Med Genet 12:19.  https://doi.org/10.1186/1471-2350-12-19 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ross RJ, Weiner MM et al (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505(7483):353–359.  https://doi.org/10.1038/nature12987 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roy J, Mallick B (2017) Altered gene expression in late-onset Alzheimer’s disease due to SNPs within 3′UTR microRNA response elements. Genomics 109(3–4):177–185.  https://doi.org/10.1016/j.ygeno.2017.02.006 CrossRefPubMedGoogle Scholar
  46. Sarkardeh H, Totonchi M et al (2014) Association of MOV10L1 gene polymorphisms and male infertility in azoospermic men with complete maturation arrest. J Assist Reprod Genet 31(7):865–871.  https://doi.org/10.1007/s10815-014-0240-1 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sato Y, Yamamoto N et al (2011) Genome-wide association study on overall survival of advanced non-small cell lung cancer patients treated with carboplatin and paclitaxel. J Thorac Oncol 6(1):132–138.  https://doi.org/10.1097/JTO.0b013e318200f415(Official publication of the International Association for the Study of Lung Cancer) CrossRefPubMedGoogle Scholar
  48. Severinsen JE, Bjarkam CR et al (2006) Evidence implicating BRD1 with brain development and susceptibility to both schizophrenia and bipolar affective disorder. Mol Psychiatry 11(12):1126–1138.  https://doi.org/10.1038/sj.mp.4001885 CrossRefPubMedGoogle Scholar
  49. Sherry ST, Ward MH et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311CrossRefGoogle Scholar
  50. Singh G, Roy J et al (2018) Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers. PLoS One 13(1):e0190485.  https://doi.org/10.1371/journal.pone.0190485 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Slattery ML, Trivellas A et al (2017) Genetic variants in the TGFbeta-signaling pathway influence expression of miRNAs in colon and rectal normal mucosa and tumor tissue. Oncotarget 8(10):16765–16783.  https://doi.org/10.18632/oncotarget.14508 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Song JJ, Smith SK et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437.  https://doi.org/10.1126/science.1102514 CrossRefPubMedGoogle Scholar
  53. Song X, Zhong H et al (2017) Association between SNPs in microRNA machinery genes and gastric cancer susceptibility, invasion, and metastasis in Chinese Han population. Oncotarget 8(49):86435–86446.  https://doi.org/10.18632/oncotarget.21199 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sun G, Yan J et al (2009) SNPs in human miRNA genes affect biogenesis and function. RNA 15(9):1640–1651.  https://doi.org/10.1261/rna.1560209 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sung H, Lee KM et al (2011) Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case-control study in Korea. Breast Cancer Res Treat 130(3):939–951.  https://doi.org/10.1007/s10549-011-1656-2 CrossRefPubMedGoogle Scholar
  56. Sung H, Jeon S et al (2012) Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. BMC Cancer 12:195.  https://doi.org/10.1186/1471-2407-12-195 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tarabeux J, Champagne N et al (2010) De novo truncating mutation in Kinesin 17 associated with schizophrenia. Biol Psychiatry 68(7):649–656.  https://doi.org/10.1016/j.biopsych.2010.04.018 CrossRefPubMedGoogle Scholar
  58. Tawfik NS, Spruit MR (2018) The SNPcurator: literature mining of enriched SNP-disease associations. Database.  https://doi.org/10.1093/database/bay020(The Journal of Biological Databases and Curation 2018) CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tolbert VP, Coggins GE et al (2017) Genetic susceptibility to neuroblastoma. Curr Opin Genet Dev 42:81–90.  https://doi.org/10.1016/j.gde.2017.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Toth KF, Pezic D et al (2016) The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol 886:51–77.  https://doi.org/10.1007/978-94-017-7417-8_4 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Unhavaithaya Y, Hao Y et al (2009) MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 284(10):6507–6519.  https://doi.org/10.1074/jbc.M809104200 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vagin VV, Wohlschlegel J et al (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15):1749–1762.  https://doi.org/10.1101/gad.1814809 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vasileva A, Tiedau D et al (2009) Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol 19(8):630–639.  https://doi.org/10.1016/j.cub.2009.02.047 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Waltes R, Gfesser J et al (2014) Common EIF4E variants modulate risk for autism spectrum disorders in the high-functioning range. J Neural Transm 121(9):1107–1116.  https://doi.org/10.1007/s00702-014-1230-2 CrossRefPubMedGoogle Scholar
  65. Wang Y, Juranek S et al (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456(7224):921–926.  https://doi.org/10.1038/nature07666 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wang Z, Liu N et al (2016) The Role of PIWIL4, an argonaute family protein, in breast cancer. J Biol Chem 291(20):10646–10658.  https://doi.org/10.1074/jbc.M116.723239 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141(18):3458–3471.  https://doi.org/10.1242/dev.094037 CrossRefPubMedGoogle Scholar
  68. Wu H, Zhang K et al (2014) A novel functional TagSNP Rs7560488 in the DNMT3A1 promoter is associated with susceptibility to gastric cancer by modulating promoter activity. PLoS One 9(3):e92911.  https://doi.org/10.1371/journal.pone.0092911 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xiao F, Ma J et al (2014) Natural and orthogonal model for estimating gene-gene interactions applied to cutaneous melanoma. Hum Genet 133(5):559–574.  https://doi.org/10.1007/s00439-013-1392-2 CrossRefPubMedGoogle Scholar
  70. Xie Y, Wang Y et al (2015) Single-nucleotide polymorphisms of microRNA processing machinery genes are associated with risk for gastric cancer. Oncotargets Ther 8:567–571.  https://doi.org/10.2147/OTT.S79150 CrossRefGoogle Scholar
  71. Xiong HY, Alipanahi B et al (2015) RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218):1254806.  https://doi.org/10.1126/science.1254806 CrossRefPubMedGoogle Scholar
  72. Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkp290 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xu X, Han L et al (2013) The A/G allele of eIF3a rs3740556 predicts platinum-based chemotherapy resistance in lung cancer patients. Lung Cancer 79(1):65–72.  https://doi.org/10.1016/j.lungcan.2012.10.005 CrossRefPubMedGoogle Scholar
  74. Xu M, Gao Y et al (2015) Functional promoter rs2295080 T > G variant in MTOR gene is associated with risk of colorectal cancer in a Chinese population. Biomed Pharmacother 70:28–32.  https://doi.org/10.1016/j.biopha.2014.12.045 CrossRefPubMedGoogle Scholar
  75. Yamada Y, Sakuma J et al (2017) Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies. Int J Mol Med 39(5):1091–1100.  https://doi.org/10.3892/ijmm.2017.2927 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ye Z, Vasco DA et al (2014) Genome wide association study of SNP-, gene-, and pathway-based approaches to identify genes influencing susceptibility to Staphylococcus aureus infections. Front Genet 5:125.  https://doi.org/10.3389/fgene.2014.00125 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yin JY, Meng XG et al (2015) Association of positively selected eIF3a polymorphisms with toxicity of platinum-based chemotherapy in NSCLC patients. Acta Pharmacol Sin 36(3):375–384.  https://doi.org/10.1038/aps.2014.160 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yu GP, Xiao QY et al (2015) Genetic polymorphisms in apoptosis-related genes and the prognosis of hepatocellular carcinoma. Am J Cancer Res 5(10):3249–3259PubMedPubMedCentralGoogle Scholar
  79. Yue M, Zhou D et al (2018) MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases. Nucleic Acids Res 46(D1):D181–D185.  https://doi.org/10.1093/nar/gkx1035 CrossRefPubMedGoogle Scholar
  80. Zhang J, Zhang Y et al (2014) Three SNPs in chromosome 11q23.3 are independently associated with systemic lupus erythematosus in Asians. Hum Mol Genet 23(2):524–533.  https://doi.org/10.1093/hmg/ddt424 CrossRefPubMedGoogle Scholar
  81. Zhang Y, Song B et al (2015) Genetic association study of RNF8 and BRDT variants with non-obstructive azoospermia in the Chinese Han population. Syst Biol Reprod Med 61(1):26–31.  https://doi.org/10.3109/19396368.2014.979513 CrossRefPubMedGoogle Scholar
  82. Zhang W, Liu H et al (2016) Genetic variants in the PIWI-piRNA pathway gene DCP1A predict melanoma disease-specific survival. Int J Cancer 139(12):2730–2737.  https://doi.org/10.1002/ijc.30409 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang Z, Zou Y et al (2017) HSD17B12 gene rs11037575 C > T polymorphism confers neuroblastoma susceptibility in a southern Chinese population. Oncotargets Ther 10:1969–1975.  https://doi.org/10.2147/OTT.S136006 CrossRefGoogle Scholar
  84. Zhao S, Fang F et al (2017) An in-depth analysis identifies two new independent signals in 11q23.3 associated with vitiligo in the Chinese Han population. J Dermatol Sci 88(1):103–109.  https://doi.org/10.1016/j.jdermsci.2017.05.001 CrossRefPubMedGoogle Scholar
  85. Zheng C, Wu M et al (2014) RNA granule component TDRD7 gene polymorphisms in a Han Chinese population with age-related cataract. J Int Med Res 42(1):153–163.  https://doi.org/10.1177/0300060513504702 CrossRefPubMedGoogle Scholar
  86. Zhernakova A, Stahl EA et al (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 7(2):e1002004.  https://doi.org/10.1371/journal.pgen.1002004 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhu XB, Lu JQ et al (2016) Association of a TDRD1 variant with spermatogenic failure susceptibility in the Han Chinese. J Assist Reprod Genet 33(8):1099–1104.  https://doi.org/10.1007/s10815-016-0738-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.RNAi and Functional Genomics Lab, Department of Life ScienceNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Life ZoologyUniversity of Madras, Guindy CampusChennaiIndia
  3. 3.The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations