Advertisement

Preferential insertion of a Ty1 LTR-retrotransposon into the A sub-genome’s HD1 gene significantly correlated with the reduction in stem trichomes of tetraploid cotton

  • Mengling Tang
  • Xingcheng Wu
  • Yuefen Cao
  • Yuan Qin
  • Mingquan Ding
  • Yurong Jiang
  • Chengdong Sun
  • Hua Zhang
  • Andrew H. Paterson
  • Junkang RongEmail author
Original Article
  • 1 Downloads

Abstract

Stem trichomes and seed fibers originate from epidermal cells and partially share a regulatory pathway at the molecular level. In Gossypium barbadense, two insertions of a Ty1 long-terminal repeat-retrotransposon [transposable element TE1 and TE2] in a homeodomain-leucine zipper gene (HD1) result in glabrous stems. The primers used to identify the TE insertions in G. barbadense were applied to screen for the same events in 81 modern G. hirsutum varieties and 31 wild races. Three wild races were found carrying the same TEs as G. barbadense. However, the TE insertions in two of these wild races occurred at different sites (4th exon), therefore, named TE3, while the TE in the other wild race occurred at the same site as TE2. An RNA sequencing and qRT-PCR analysis indicated that the loss of HD1 function was caused by the TE insertion. Genetic mapping revealed a strong association between glabrous stems and TE3 insertions, confirming that HD1 is a critical gene for stem trichome initiation in G. hirsutum, as in G. barbadense. Using the long-terminal repeat sequence as a query to search against the Texas Marker-1 reference genome sequence, we found that the TE occurred after tetraploid cotton formation and evolved at different rates in G. hirsutum and G. barbadense. Interestingly, at least three independent insertion events of the same retrotransposon occurred preferentially in the A sub-genome’s HD1 gene, but not in the D sub-genome of G. hirsutum or G. barbadense, suggesting that an unknown TE insertion mechanism and resultant gene function changes may have hastened cotton speciation.

Keywords

G. hirsutum LTR-retrotransposons Stem trichome Homeodomain-leucine zipper Genetic mapping 

Notes

Acknowledgements

We thank Prof. Fang Liu at the Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS) for providing us with wild G. hirsutum races. This work was supported by the National Key R & D Program for Crop Breeding (Grant no. 2016YFD0101417) to MD and the National Natural Science Foundation of China to YC (Grant no. 31501349) and YJ (Grant no. 31301372).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

438_2019_1602_MOESM1_ESM.xlsx (231 kb)
Supplementary material 1 (XLSX 230 kb)
438_2019_1602_MOESM2_ESM.docx (283 kb)
Supplementary material 2 (DOCX 282 kb)

References

  1. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefGoogle Scholar
  2. Cao Y, Jiang Y, Ding M et al (2015) Molecular characterization of a transcriptionally active ty1/copia-like retrotransposon in Gossypium. Plant Cell Rep 34(6):1037–1047CrossRefGoogle Scholar
  3. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890CrossRefGoogle Scholar
  4. Ding M, Ye W, Lin L, He S, Du X, Chen A et al (2015) The hairless stem phenotype of cotton (Gossypium barbadense) is linked to a copia-like retrotransposon insertion in a homeodomain-leucine zipper gene (HD1). Genetics 201(1):143CrossRefGoogle Scholar
  5. Endrizzi JE, Turcotte EL, Kohel RJ (1984) Qualitative genetics, cytology, and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. Agronomy Monograph, vol 24. ASA, CSSA, SSSA, Madison, Wisconsin, USA, pp 81–129Google Scholar
  6. Guan X, Yu N, Shangguan X, Wang S, Lu S, Wang L, Chen X (2007) Arabidopsis trichome research sheds light on cotton fiber development mechanisms. Chin Sci Bull 52:1734–1741CrossRefGoogle Scholar
  7. He S, Zheng Y, Chen A et al (2013) Converting restriction fragment length polymorphism to single-strand conformation polymorphism markers and its application in the fine mapping of a trichome gene in cotton. Plant Breed 132:337–343CrossRefGoogle Scholar
  8. Hu G, Hawkins JS, Grover CE et al (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53(8):599–607CrossRefGoogle Scholar
  9. Humphries John A, Walker Amanda R, Timmis Jeremy N, Orford Sharon J (2005) Two wd-repeat genes from cotton are functional homologues of the arabidopsis thaliana, TRANSPARENT TESTA GLABRA1, (TTG1) gene. Plant Mol Biol 57(1):67–81CrossRefGoogle Scholar
  10. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360CrossRefGoogle Scholar
  11. Kloth RH (1993) New evidence relating the pilose allele and micronaire reading in cotton. Crop Sci 33:683–687CrossRefGoogle Scholar
  12. Kloth RH (1995) Quantitative trait loci affecting cotton fiber are linked to the T1 locus in upland cotton. Theor Appl Genet 91:762–768CrossRefGoogle Scholar
  13. Kosambi DD (1944) The geometric method in mathematical statistics. Am Math Mon 7:382–389CrossRefGoogle Scholar
  14. Lacape JM, Nguyen TB (2005) Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Hered 96(4):441CrossRefGoogle Scholar
  15. Lee JA (1985) Revision of the genetics of the hairiness-smoothness system of Gossypium. J Hered 76(2):123–126CrossRefGoogle Scholar
  16. Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6):567–572CrossRefGoogle Scholar
  17. Liao Y, Smyth GK, Shi W (2014) Feature counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930CrossRefGoogle Scholar
  18. Liu X, Zhao B, Zheng H-J et al (2015) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5(14139):14139CrossRefGoogle Scholar
  19. Liu Z, Liu Y, Liu F et al (2018) Genome-wide survey and comparative analysis of long terminal repeat (LTR) Retrotransposon families in four Gossypium species. Sci Rep 8(1):9399CrossRefGoogle Scholar
  20. Liu X, Wu X, Sun C, Rong J (2019) Identification and expression proiling of the regulator of chromosome condensation 1 (RCC1) gene family in Gossypium Hirsutum L. under abiotic Stress and hormone treatments. Int J Mol Sci 20(7):1727CrossRefGoogle Scholar
  21. Ma D, Hu Y, Yang C et al (2016) Genetic basis for glandular trichome formation in cotton. Nat Commun 7:10456CrossRefGoogle Scholar
  22. Meng L, Li H, Zhang L et al (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3(3):269–283CrossRefGoogle Scholar
  23. Mitsutomo A, Hiroshi K, Yoshibumi K et al (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130(4):635–643CrossRefGoogle Scholar
  24. Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427CrossRefGoogle Scholar
  25. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26CrossRefGoogle Scholar
  26. Walford S, Wu Y, Llewellyn DJ et al (2012) Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J 71(3):464–478Google Scholar
  27. Wan Q, Zhang Z, Hu M, Chen L, Liu D, Chen X, Wang W, Zheng J (2007) T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica 158:241–247CrossRefGoogle Scholar
  28. Wang S, Wang JW, Yu N et al (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16(9):2323CrossRefGoogle Scholar
  29. Wright R, Thaxton P, Elzik K et al (1999) Molecular mapping of genes affecting pubescence of cotton. J Hered 90(1):215–219CrossRefGoogle Scholar
  30. Zhang F, Zuo K, Zhang J et al (2010) An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. J Exp Bot 61(13):3599–3613CrossRefGoogle Scholar
  31. Zhang T, Hu Y, Jiang W et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33(5):531–537CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mengling Tang
    • 1
  • Xingcheng Wu
    • 1
  • Yuefen Cao
    • 1
  • Yuan Qin
    • 2
  • Mingquan Ding
    • 1
  • Yurong Jiang
    • 1
  • Chengdong Sun
    • 1
  • Hua Zhang
    • 1
  • Andrew H. Paterson
    • 3
  • Junkang Rong
    • 1
    Email author
  1. 1.The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food ScienceZhejiang A&F UniversityHangzhouChina
  2. 2.State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)AnyangChina
  3. 3.Plant Genome Mapping LaboratoryUniversity of GeorgiaAthensUSA

Personalised recommendations