Advertisement

Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping

  • Muhammad Arifuzzaman
  • Atena Oladzadabbasabadi
  • Phillip McClean
  • Mukhlesur RahmanEmail author
Original Article

Abstract

Root system in plants plays an important role in mining moisture and nutrients from the soil and is positively correlated to yield in many crops including rapeseed/canola (Brassica napus L.). Substantial phenotypic diversity in root architectural traits among the B. napus growth types leads to a scope of root system improvement in breeding populations. In this study, 216 diverse genotypes were phenotyped for five different root architectural traits following shovelomics approach in the field condition during 2015 and 2016. A single nucleotide polymorphism (SNP) marker panel consisting of 30,262 SNPs was used to conduct genome-wide association study to detect marker/trait association. A total of 31 significant marker loci were identified at 0.01 percentile tail P value cutoff for different root traits. Six marker loci for soil-level taproot diameter (R1Dia), six loci for belowground taproot diameter (R2Dia), seven loci for number of primary root branches (PRB), eight loci for root angle, and eight loci for root score (RS) were detected in this study. Several markers associated with root diameters R1Dia and R2Dia were also associated with PRB and RS. Significant phenotypic correlation between these traits was observed in both environments. Therefore, taproot diameter appears to be a major determinant of the canola root system architecture and can be used as proxy for other root traits. Fifteen candidate genes related to root traits and root development were detected within 100 kbp upstream and downstream of different significant markers. The identified markers associated with different root architectural traits can be considered for marker-assisted selection for root traits in canola in future.

Keywords

GWAS Shovelomics Root architectural traits Brassica napus Marker assisted selection 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The authors also declare that this article does not contain any studies related with human participants or animals performed by any of the authors and complies with ethical standard.

Supplementary material

438_2019_1563_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 17 kb)
438_2019_1563_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)

References

  1. Ariel FD, Diet A, Crespi M, Chan RL (2010) The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress. Plant Signal Behav 5:1666–1668.  https://doi.org/10.4161/psb.5.12.14020 CrossRefGoogle Scholar
  2. Arifuzzaman M, Rahman M (2017) A comparative study on root traits of spring and winter canola (Brassica napus L.) under controlled and water stressed conditions. J Agric Sci 9:58.  https://doi.org/10.5539/jas.v9n7p58 Google Scholar
  3. Arifuzzaman M, Mamidi S, Mcclean P, Rahman M (2016) QTL mapping for root vigor and days to flowering in Brassica napus L. Can J Plant Sci 109:99–109.  https://doi.org/10.1139/cjps-2016-0048 Google Scholar
  4. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296.  https://doi.org/10.1093/bioinformatics/btm108 CrossRefGoogle Scholar
  5. Begum H, Spindel JE, Lalusin A et al (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS ONE 10:1–19.  https://doi.org/10.1371/journal.pone.0119873 CrossRefGoogle Scholar
  6. Bucksch A, Burridge J, York LM et al (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166:470–486.  https://doi.org/10.1104/pp.114.243519 CrossRefGoogle Scholar
  7. Burridge J, Jochua CN, Bucksch A, Lynch JP (2016) Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crop Res 192:21–32.  https://doi.org/10.1016/j.fcr.2016.04.008 CrossRefGoogle Scholar
  8. Burridge JD, Schneider HM, Huynh BL et al (2017) Genome-wide association mapping and agronomic impact of cowpea root architecture. Theor Appl Genet 130:419–431.  https://doi.org/10.1007/s00122-016-2823-y CrossRefGoogle Scholar
  9. Canamero RC, Bakrim N, Bouly JP et al (2006) Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224:995–1003.  https://doi.org/10.1007/s00425-006-0280-6 CrossRefGoogle Scholar
  10. Canè MA, Maccaferri M, Nazemi G et al (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34:1629–1645.  https://doi.org/10.1007/s11032-014-0177-1 CrossRefGoogle Scholar
  11. Clark RT, MacCurdy RB, Jung JK et al (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465.  https://doi.org/10.1104/pp.110.169102 CrossRefGoogle Scholar
  12. Colombi T, Kirchgessner N, Le Marie CA, et al (2015) Next generation shovelomics: set up a tent and REST. Plant Soil.  https://doi.org/10.1007/s11104-015-2379-7
  13. Courtois B, Audebert A, Dardou A et al (2013) Genome-wide association mapping of root traits in a Japonica rice panel. PLoS ONE 8:1–18.  https://doi.org/10.1371/journal.pone.0078037 Google Scholar
  14. de Dorlodot S, Forster B, Pages L et al (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481.  https://doi.org/10.1016/j.tplants.2007.08.012 CrossRefGoogle Scholar
  15. Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87.  https://doi.org/10.1016/j.pbi.2007.10.003 CrossRefGoogle Scholar
  16. Elias EM, Manthey FA (2016) Registration of “Joppa” durum wheat. Crop Sci 10:139–144.  https://doi.org/10.2135/cropsci2004.1025 Google Scholar
  17. Elshire RJ, Glaubitz JC, Sun Q, et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE.  https://doi.org/10.1371/journal.pone.0019379
  18. Ferreira ME, Satagopan J, Yandell BS et al (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732.  https://doi.org/10.1007/BF00222140 CrossRefGoogle Scholar
  19. Gong F, Wu X, Zhang H, et al (2015) Making better maize plants for sustainable grain production in a changing climate. Front Plant Sci.  https://doi.org/10.3389/fpls.2015.00835
  20. Gruber BD, Giehl RFH, Friedel S, von Wiren N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179.  https://doi.org/10.1104/pp.113.218453 CrossRefGoogle Scholar
  21. Hund A (2010) Genetic variation in the gravitropic response of maize roots to low temperatures. Plant Root 4:22–30.  https://doi.org/10.3117/plantroot.4.22 CrossRefGoogle Scholar
  22. Kang HM, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723.  https://doi.org/10.1534/genetics.107.080101 CrossRefGoogle Scholar
  23. Kebede B, Thiagarajah M, Zimmerli C, Rahman MH (2010) Improvement of open-pollinated spring rapeseed (Brassica napus L.) through introgression of genetic diversity from winter rapeseed. Crop Sci 50:1236–1243.  https://doi.org/10.2135/cropsci2009.06.0352 CrossRefGoogle Scholar
  24. Kim H, Park PJ, Hwang HJ et al (2006) Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with Auxin in root development. Biosci Biotechnol Biochem 70:768–773.  https://doi.org/10.1271/bbb.70.768 CrossRefGoogle Scholar
  25. Knox K (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777.  https://doi.org/10.1242/dev.00659 CrossRefGoogle Scholar
  26. Koboldt DC, Zhang Q, Larson DE et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576CrossRefGoogle Scholar
  27. Kong X, Zhang M, De Smet I, Ding Z (2014) Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol 32:597–598.  https://doi.org/10.1016/j.tibtech.2014.09.008 CrossRefGoogle Scholar
  28. Kuijken RCP, Van Eeuwijk FA, Marcelis LFM, Bouwmeester HJ (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66:5389–5401CrossRefGoogle Scholar
  29. Kumar B, Abdel-Ghani AH, Reyes-Matamoros J et al (2012) Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breed 131:465–478.  https://doi.org/10.1111/j.1439-0523.2012.01980.x CrossRefGoogle Scholar
  30. Kwak SH, Schiefelbein J (2014) TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis. Plant Signal Behav.  https://doi.org/10.4161/15592324.2014.973815
  31. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN]
  32. Li X, Guo Z, Lv Y, et al (2017) Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1006889
  33. Lin L, Allemekinders H, Dansby A et al (2013) Evidence of health benefits of canola oil. Nutr Rev 71:370–385.  https://doi.org/10.1111/nure.12033 CrossRefGoogle Scholar
  34. Lipka AE, Tian F, Wang Q et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399.  https://doi.org/10.1093/bioinformatics/bts444 CrossRefGoogle Scholar
  35. Lou Q, Chen L, Mei H et al (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757.  https://doi.org/10.1093/jxb/erv246 CrossRefGoogle Scholar
  36. Luo X, Ma C, Yi B et al (2016) Genetic distance revealed by genomic single nucleotide polymorphisms and their relationships with harvest index heterotic traits in rapeseed (Brassica napus L.). Euphytica 209:41–47.  https://doi.org/10.1007/s10681-015-1629-3 CrossRefGoogle Scholar
  37. Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512.  https://doi.org/10.1071/BT06118 CrossRefGoogle Scholar
  38. Mamidi S, Chikara S, Goos RJ et al (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome J 4:154.  https://doi.org/10.3835/plantgenome2011.04.0011 CrossRefGoogle Scholar
  39. Mamidi S, Lee RK, Goos JR, McClean PE (2014) Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS ONE.  https://doi.org/10.1371/journal.pone.0107469
  40. Moghaddam SM, Mamidi S, Osorno JM, et al (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a Middle American diversity panel of common bean. Plant Genome 9:0.  https://doi.org/10.3835/plantgenome2016.02.0012
  41. Pace J, Gardner C, Romay C, et al (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom.  https://doi.org/10.1186/s12864-015-1226-9
  42. Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859.  https://doi.org/10.1071/FP12079 CrossRefGoogle Scholar
  43. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909.  https://doi.org/10.1038/ng1847 CrossRefGoogle Scholar
  44. Rahaman M, Mamidi S, Rahman M (2017) Association mapping of agronomic traits of canola (Brassica napus L.) subject to heat stress under field conditions. Aust J Crop Sci 11:1094–1105.  https://doi.org/10.21475/ajcs.17.11.09.pne512 CrossRefGoogle Scholar
  45. Rahman M, McClean P (2013) Genetic analysis on flowering time and root system in Brassica napus L. Crop Sci 53:141.  https://doi.org/10.2135/cropsci2012.02.0095 CrossRefGoogle Scholar
  46. Santelia D, Vincenzetti V, Azzarello E et al (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579:5399–5406.  https://doi.org/10.1016/j.febslet.2005.08.061 CrossRefGoogle Scholar
  47. Savage N, Yang TJW, Chen CY et al (2013) Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana. PLoS ONE.  https://doi.org/10.1371/journal.pone.0075452
  48. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644.  https://doi.org/10.1086/502802 CrossRefGoogle Scholar
  49. Soltani A, Moghaddam S, Walter K et al (2017) Genetic architecture of flooding tolerance in the dry bean Middle-American diversity panel. Front Plant Sci 8:1–15.  https://doi.org/10.3389/fpls.2017.01183 CrossRefGoogle Scholar
  50. Sun G, Zhu C, Kramer MH et al (2010) Variation explained in mixed-model association mapping. Heredity (Edinb) 105:333–340.  https://doi.org/10.1038/hdy.2010.11 CrossRefGoogle Scholar
  51. Tabachnick B, Fidel L (2001) Computer-assisted research design and analysis. Allyn & Bacon, Boston, MAGoogle Scholar
  52. Thomas CL, Alcock TD, Graham NS et al (2016) Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol 16:1–18.  https://doi.org/10.1186/s12870-016-0902-5 CrossRefGoogle Scholar
  53. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87.  https://doi.org/10.1007/s11104-010-0623-8 CrossRefGoogle Scholar
  54. Truong SK, McCormick RF, Rooney WL, Mullet JE (2015) Harnessing genetic variation in leaf angle to increase productivity of sorghum bicolor. Genetics 201:1229–1238.  https://doi.org/10.1534/genetics.115.178608 CrossRefGoogle Scholar
  55. Ühlken C, Horvath B, Stadler R et al (2014) MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. Plant J 78:107–120.  https://doi.org/10.1111/tpj.12455 CrossRefGoogle Scholar
  56. UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  57. Vanneste S, Coppens F, Lee E et al (2011) Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J 30:3430–3441.  https://doi.org/10.1038/emboj.2011.240 CrossRefGoogle Scholar
  58. Vergauwen D, De Smet I (2017) From early farmers to Norman Borlaug—the making of modern wheat. Curr Biol 27:R858–R862CrossRefGoogle Scholar
  59. Wang X, Chen Y, Thomas CL et al (2017) Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res 24:407–417.  https://doi.org/10.1093/dnares/dsx013 CrossRefGoogle Scholar
  60. Wasson AP, Richards RA, Chatrath R et al (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498.  https://doi.org/10.1093/jxb/ers111 CrossRefGoogle Scholar
  61. Wenig U, Meyer S, Stadler R et al (2013) Identification of MAIN, a factor involved in genome stability in the meristems of Arabidopsis thaliana. Plant J 75:469–483.  https://doi.org/10.1111/tpj.12215 CrossRefGoogle Scholar
  62. York LM, Lynch JP (2015) Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. J Exp Bot 66:5493–5505.  https://doi.org/10.1093/jxb/erv241 CrossRefGoogle Scholar
  63. Zhang Y, Thomas CL, Xiang J et al (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:1–12.  https://doi.org/10.1038/srep33113 CrossRefGoogle Scholar
  64. Zhao JH (2007) Gap: genetic analysis package. J Stat Softw 23:1–18.  https://doi.org/10.18637/jss.v023.i08 CrossRefGoogle Scholar
  65. Zhao Y, Wang H, Chen W, Li Y (2014) Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS ONE.  https://doi.org/10.1371/journal.pone.0086308
  66. Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14:310–317.  https://doi.org/10.1016/j.pbi.2011.03.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departemnt of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations