Distinct evolutionary origins of common multi-drug resistance phenotypes in Salmonella typhimurium DT104: a convergent process for adaptation under stress

  • Le Tang
  • Song-Ling Zhu
  • Xin Fang
  • Yong-Guo Li
  • Cornelis Poppe
  • Randal N. Johnston
  • Gui-Rong LiuEmail author
  • Shu-Lin LiuEmail author
Original Article


Antimicrobial resistance makes pathogenic bacteria hard to control, but little is known about the general processes of resistance gain or loss. Here, we compared distinct S. typhimurium DT104 strains resistant to zero, two, five, or more of the tested antimicrobials. We found that common resistance phenotypes could be encoded by distinct genes, on SGI-1 or plasmid. We also demonstrated close clonality among all the tested non-resistant and differently resistant DT104 strains, demonstrating dynamic acquisition or loss (by total deletion or gradual decaying of multi-drug resistance gene clusters) of the genetic traits. These findings reflect convergent processes to make the bacteria resistant to multiple antimicrobials by acquiring the needed traits from stochastically available origins. When the antimicrobial stress is absent, the resistance genes may be dropped off quickly, so the bacteria can save the cost for maintaining unneeded genes. Therefore, this work reiterates the importance of strictly controlled use of antimicrobials.


Salmonella typhimurium DT104 Antimicrobial resistance SGI-1 P972816 Convergent process Pathogenic evolution 



This study was funded by a grant of the National Natural Science Foundation of China (NSFC31600001), a National Postdoctoral Fellowship of China (2016M600266), and an Alberta Innovates Health Solutions (AIHS) Postdoctoral Fellowship of Canada to LT; Genome Canada grant 256177 to CP; and grants of the National Science Foundation of China (NSFC81030029, 81271786, 81671980, and 81871623) to SLL.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bao HX, Tang L, Yu L, Wang XY, Li Y, Deng X, Li YG, Li A, Zhu DL, Johnston RN, Liu GR, Feng Y, Liu SL (2014) Differential efficiency in exogenous DNA acquisition among closely related Salmonella strains: implications in bacterial speciation. BMC Microbiol 14:157CrossRefGoogle Scholar
  2. Bochner BR, Huang HC, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933Google Scholar
  3. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, Mulvey MR (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183:5725–5732CrossRefGoogle Scholar
  4. Chen F, Liu WQ, Eisenstark A, Johnston RN, Liu GR, Liu SL (2010a) Multiple genetic switches spontaneously modulating bacterial mutability. BMC Evol Biol 10:277CrossRefGoogle Scholar
  5. Chen F, Liu WQ, Liu ZH, Zou QH, Wang Y, Li YG, Zhou J, Eisenstark A, Johnston RN, Liu GR, Yang BF, Liu SL (2010b) mutL as a genetic switch of bacterial mutability: turned on or off through repeat copy number changes. FEMS Microbiol Lett 312:126–132CrossRefGoogle Scholar
  6. Cooke FJ, Brown DJ, Fookes M, Pickard D, Ivens A, Wain J, Roberts M, Kingsley RA, Thomson NR, Dougan G (2008) Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol 190:8155–8162CrossRefGoogle Scholar
  7. Fekete PZ, Nagy B (2008) Salmonella Genomic Island 1 (SGI1) and genetic characteristics of animal and food isolates of Salmonella typhimurium DT104 in Hungary. Acta Vet Hung 56:5–11CrossRefGoogle Scholar
  8. Gong J, Liu WQ, Liu GR, Chen F, Li JQ, Xu GM, Wang L, Johnston RN, Eisenstark A, Liu SL (2007) Spontaneous conversion between mutL and 6 bpDeltamutL in Salmonella typhimurium LT7: association with genome diversification and possible roles in bacterial adaptation. Genomics 90:542–549CrossRefGoogle Scholar
  9. Hermans AP, Beuling AM, van Hoek AH, Aarts HJ, Abee T, Zwietering MH (2006) Distribution of prophages and SGI-1 antibiotic-resistance genes among different Salmonella enterica serovar Typhimurium isolates. Microbiology 152:2137–2147CrossRefGoogle Scholar
  10. Kothapalli S, Nair S, Alokam S, Pang T, Khakhria R, Woodward D, Johnson W, Stocker BA, Sanderson KE, Liu SL (2005) Diversity of Genome Structure in Salmonella enterica Serovar Typhi Populations. J Bacteriol 187:2638–2650CrossRefGoogle Scholar
  11. Liu SL (2007) Physical mapping of Salmonella genomes. Methods Mol Biol 5:39–58CrossRefGoogle Scholar
  12. Liu SL, Sanderson KE (1992) A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol 174:1662–1672CrossRefGoogle Scholar
  13. Liu SL, Sanderson KE (1995) Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA 92:1018–1022CrossRefGoogle Scholar
  14. Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93:10303–10308CrossRefGoogle Scholar
  15. Liu SL, Hessel A, Sanderson KE (1993) The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol 175:4104–4120CrossRefGoogle Scholar
  16. Liu GR, Rahn A, Liu WQ, Sanderson KE, Johnston RN, Liu SL (2002) The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol 184:2626–2633CrossRefGoogle Scholar
  17. Liu GR, Liu WQ, Johnston RN, Sanderson KE, Li SX, Liu SL (2006) Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol Biol Evol 23:365–371CrossRefGoogle Scholar
  18. Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, Brown DJ, Coia JE, Mulvey MR, Gilmour MW, Petrovska L, de Pinna E, Kuroda M, Akiba M, Izumiya H, Connor TR, Suchard MA, Lemey P, Mellor DJ, Haydon DT, Thomson NR (2013) Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341:1514–1517CrossRefGoogle Scholar
  19. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A (2006) The genetics of Salmonella genomic island 1. Microbes Infect 5:56Google Scholar
  20. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O’Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852CrossRefGoogle Scholar
  21. Pillon MC, Dubinsky M, Johnston RN, Liu SL, Guarne A (2013) Characterization of the defects in the ATP lid of E. coli MutL that cause transient hypermutability. DNA Repair 12:864–869CrossRefGoogle Scholar
  22. Poppe C, Ziebell K, Martin L, Allen K (2002) Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates. Microb Drug Resist 8:107–122CrossRefGoogle Scholar
  23. Song J, Ware A, Liu SL (2003) Wavelet to predict bacterial ori and ter: a tendency towards a physical balance. BMC Genom 4:17CrossRefGoogle Scholar
  24. Tang L, Liu SL (2012) The 3Cs provide a novel concept of bacterial species: messages from the genome as illustrated by Salmonella. Antonie Van Leeuwenhoek 101:67–72CrossRefGoogle Scholar
  25. Tang L, Li Y, Deng X, Johnston RN, Liu GR, Liu SL (2013a) Defining natural species of bacteria: clear-cut genomic boundaries revealed by a turning point in nucleotide sequence divergence. BMC Genom 14:489CrossRefGoogle Scholar
  26. Tang L, Wang CX, Zhu SL, Li Y, Deng X, Johnston RN, Liu GR, Liu SL (2013b) Genetic boundaries to delineate the typhoid agent and other Salmonella serotypes into distinct natural lineages. Genomics 102:331–337CrossRefGoogle Scholar
  27. Threlfall EJ, Frost JA, Ward LR, Rowe B (1994) Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 134:577CrossRefGoogle Scholar
  28. Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan S, Sanderson KE, Johnston RN, Liu SL (2005) The genome of Salmonella enterica serovar gallinarum: distinct insertions/deletions and rare rearrangements. J Bacteriol 187:4720–4727CrossRefGoogle Scholar
  29. Zhao EY, Bao HX, Tang L, Zou QH, Liu WQ, Zhu DL, Chin J, Dong YY, Li YG, Cao FL, Poppe C, Sanderson KE, Johnston RN, Zhou D, Liu GR, Liu SL (2013) Genomic comparison of Salmonella typhimurium DT104 with non-DT104 strains. Mol Genet Genomics 288:549–557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Le Tang
    • 1
    • 2
    • 6
  • Song-Ling Zhu
    • 1
    • 2
  • Xin Fang
    • 1
    • 2
  • Yong-Guo Li
    • 3
  • Cornelis Poppe
    • 4
  • Randal N. Johnston
    • 5
  • Gui-Rong Liu
    • 1
    • 2
    Email author
  • Shu-Lin Liu
    • 1
    • 2
    • 3
    • 7
    Email author
  1. 1.Systemomics Center, College of Pharmacy, and Genomics Research CenterHarbin Medical UniversityHarbinChina
  2. 2.HMU-UCCSM Centre for Infection and GenomicsHarbin Medical UniversityHarbinChina
  3. 3.Department of Infectious Diseases of First Affiliated HospitalHarbin Medical UniversityHarbinChina
  4. 4.Laboratory for Foodborne ZoonosesPublic Health Agency of CanadaGuelphCanada
  5. 5.Department of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada
  6. 6.Department of Ecosystems and Public HealthUniversity of CalgaryCalgaryCanada
  7. 7.Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada

Personalised recommendations