Advertisement

Molecular Genetics and Genomics

, Volume 294, Issue 2, pp 479–492 | Cite as

Resolving population structure and genetic differentiation associated with RAD-SNP loci under selection in tossa jute (Corchorus olitorius L.)

  • Debabrata SarkarEmail author
  • Avijit Kundu
  • Debajeet Das
  • Avrajit Chakraborty
  • Nur Alam Mandal
  • Pratik Satya
  • Pran Gobinda Karmakar
  • Chandan Sourav Kar
  • Jiban Mitra
  • Nagendra Kumar Singh
Original Article

Abstract

The genetic basis of selection for geographic adaptation and how it has contributed to population structure are unknown in tossa jute (Corchorus olitorius), an important bast fibre crop. We performed restriction site-associated DNA (RAD) sequencing-based (1115 RAD-SNPs) population genomic analyses to investigate genetic differentiation and population structure within a collection of 221 fibre-type lines from across nine geographic regions of the world. Indian populations, with relatively higher overall diversity, were significantly differentiated (based on FST and PCA) from the African and the other Asian populations. There is strong evidence that African C. olitorius was first introduced in peninsular India that could perhaps be its secondary centre of origin. However, multiple later introductions have occurred in central, eastern and northern India. Based on four assignment tests with different statistical bases, we infer that two ancestral subpopulations (African and Indian) structure the C. olitorius populations, but not in accordance with their geographic origins and patterns of diversity. Our results advocate recent migration of C. olitorius through introduction and germplasm exchange across geographical boundaries. We argue that high intraspecific genetic admixture could be associated with increased genetic variance within Indian populations. Employing both subpopulation (FST/GST-outlier) and individual-based (PCAdapt) tests, we detected putative RAD-SNP loci under selection and demonstrated that bast fibre production was an artificial, while abiotic and biotic stresses were natural selection pressures in C. olitorius adaptation. By reinferring the population structure without outlier loci, we propose ad interim that C. olitorius was possibly domesticated as a fibre crop in the Indian subcontinent.

Keywords

FST outlier Genotyping-by-sequencing Population genomics Population structure RADseq Single-nucleotide polymorphism 

Notes

Acknowledgements

This work was funded by National Agricultural Science Fund (NASF), Indian Council of Agricultural Research (ICAR), New Delhi (Grant ID: GB-2018) and ICAR-Network Project on Transgenics in Crops (Grant ID: ICAR-NPTC-3070). We thank NxGenBio Life Sciences, New Delhi for assistance in RADseq library preparation, Illumina HiSeq™ 2000 sequencing and raw data processing. We also thank Dr. Subhojit Datta for helpful feedback on tossa jute aquaporins. The manuscript was reviewed and approved by the institute. Comments and suggestions on the manuscript from the Editor and two anonymous reviewers are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All laboratory experiments complied with appropriate ethical standards, according to existing rules and regulations of the Indian Council of Agricultural Research (ICAR), Government of India. The article does not pertain to any laboratory experiments involving human participants or animals.

Supplementary material

438_2018_1526_MOESM1_ESM.xlsx (86 kb)
Supplementary material 1 (XLSX 86 KB)
438_2018_1526_MOESM2_ESM.xlsx (58 kb)
Supplementary material 2 (XLSX 57 KB)
438_2018_1526_MOESM3_ESM.pdf (345 kb)
Supplementary material 3 (PDF 345 KB)
438_2018_1526_MOESM4_ESM.xlsx (284 kb)
Supplementary material 4 (XLSX 284 KB)
438_2018_1526_MOESM5_ESM.xlsx (47 kb)
Supplementary material 5 (XLSX 47 KB)
438_2018_1526_MOESM6_ESM.pdf (400 kb)
Supplementary material 6 (PDF 399 KB)
438_2018_1526_MOESM7_ESM.xlsx (56 kb)
Supplementary material 7 (XLSX 56 KB)
438_2018_1526_MOESM8_ESM.pdf (476 kb)
Supplementary material 8 (PDF 475 KB)
438_2018_1526_MOESM9_ESM.xlsx (11 kb)
Supplementary material 9 (XLSX 11 KB)
438_2018_1526_MOESM10_ESM.pdf (1.1 mb)
Supplementary material 10 (PDF 1116 KB)
438_2018_1526_MOESM11_ESM.pdf (399 kb)
Supplementary material 11 (PDF 398 KB)
438_2018_1526_MOESM12_ESM.pdf (171 kb)
Supplementary material 12 (PDF 171 KB)
438_2018_1526_MOESM13_ESM.pdf (235 kb)
Supplementary material 13 (PDF 234 KB)
438_2018_1526_MOESM14_ESM.pdf (241 kb)
Supplementary material 14 (PDF 240 KB)
438_2018_1526_MOESM15_ESM.pdf (229 kb)
Supplementary material 15 (PDF 229 KB)
438_2018_1526_MOESM16_ESM.pdf (351 kb)
Supplementary material 16 (PDF 350 KB)
438_2018_1526_MOESM17_ESM.xlsx (50 kb)
Supplementary material 17 (XLSX 50 KB)
438_2018_1526_MOESM18_ESM.pdf (272 kb)
Supplementary material 18 (PDF 271 KB)
438_2018_1526_MOESM19_ESM.xlsx (54 kb)
Supplementary material 19 (XLSX 54 KB)
438_2018_1526_MOESM20_ESM.xlsx (47 kb)
Supplementary material 20 (XLSX 46 KB)
438_2018_1526_MOESM21_ESM.pdf (311 kb)
Supplementary material 21 (PDF 310 KB)
438_2018_1526_MOESM22_ESM.pdf (188 kb)
Supplementary material 22 (PDF 187 KB)
438_2018_1526_MOESM23_ESM.pdf (199 kb)
Supplementary material 23 (PDF 198 KB)
438_2018_1526_MOESM24_ESM.pdf (363 kb)
Supplementary material 24 (PDF 362 KB)
438_2018_1526_MOESM25_ESM.pdf (1012 kb)
Supplementary material 25 (PDF 1011 KB)
438_2018_1526_MOESM26_ESM.xlsx (76 kb)
Supplementary material 26 (XLSX 75 KB)

References

  1. Akter J, Islam MS, Sajib AA, Ashraf N, Haque S, Khan H (2008) Microsatellite markers for determining genetic identities and genetic diversity among jute cultivars. Austral J Crop Sci 1:97–107Google Scholar
  2. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92CrossRefGoogle Scholar
  3. Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F st-outlier method. BMC Bioinform 9:323CrossRefGoogle Scholar
  4. Banerjee S, Das M, Mir RR, Kundu A, Topdar N, Sarkar D et al (2012) Assessment of genetic diversity and population structure in a selected germplasm collection of 292 jute genotypes by microsatellite (SSR) markers. Mol Plant Breed 3:11–25Google Scholar
  5. Basu A, Ghosh M, Meyer R, Powell W, Basak SL, Sen SK (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci 44:678–685CrossRefGoogle Scholar
  6. Basu T, Satya P, Sarkar D, Kar CS, Mitra J, Karmakar PG (2016) Organelle genetic diversity in a global collection of jute (Corchorus capsularis and C. olitorius, Malvaceae). S Afr J Bot 103:54–60CrossRefGoogle Scholar
  7. Benor S, Blattner FR, Demissew S, Hammer K (2010) Collection and ethnobotanical investigation of Corchorus species in Ethiopia: potential leafy vegetables for dry regions. Genet Resour Crop Evol 57:293–306CrossRefGoogle Scholar
  8. Benor S, Demissew S, Hammer K, Blattner FR (2012) Genetic diversity and relationships in Corchorus olitorius (Malvaceae s. l.) inferred from molecular and morphological data. Genet Resour Crop Evol 59:1125–1146CrossRefGoogle Scholar
  9. Bienert MD, Delannoy M, Navarre C, Boutry M (2012) NtSCP1 from tobacco is an extracellular serine carboxypeptidase III that has an impact on cell elongation. Plant Physiol 158:1220–1229CrossRefGoogle Scholar
  10. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  11. Campana MG, Hunt HV, Jones H, White J (2011) CorrSieve: software for summarizing and evaluating Structure output. Mol Ecol Resour 11:349–352CrossRefGoogle Scholar
  12. Carvajal-Rodríguez A (2017) HacDivSel: two new methods (haplotype-based and outlier-based) for the detection of divergent selection in pairs of populations. PLoS One 12:e0175944CrossRefGoogle Scholar
  13. Chakraborty A, Sarkar D, Satya P, Karmakar PG, Singh NK (2015) Pathways associated with lignin biosynthesis in lignomaniac jute fibres. Mol Genet Genom 290:1523–1542CrossRefGoogle Scholar
  14. Choudhary SB, Sharma HK, Anil Kumar A, Maruthi RT, Karmakar PG (2017) The genus Corchorus L. (Malvaceae) in India: species distribution and ethnobotany. Genet Resour Crop Evol 64:1675–1686CrossRefGoogle Scholar
  15. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  16. Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599CrossRefGoogle Scholar
  17. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321CrossRefGoogle Scholar
  18. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  19. Edmonds JM (1990) Herbarium survey of African Corchorus L. species. International Board for Plant Genetic Resources, RomeGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  21. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993CrossRefGoogle Scholar
  22. Foll M, Fischer MC, Heckel G, Excoffier L (2010) Estimating population structure from AFLP amplification intensity. Mol Ecol 19:4638–4647CrossRefGoogle Scholar
  23. François O, Martins H, Caye K, Schoville SD (2016) Controlling false discoveries in genome scans for selection. Mol Ecol 25:454–469CrossRefGoogle Scholar
  24. Freeland JR, Kirk H, Petersen S (2011) Molecular ecology, 2 edn. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  25. Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983CrossRefGoogle Scholar
  26. Fuller DQ, Murphy C (2018) The origins and early dispersal of horsegram (Macrotyloma uniflorum), a major crop of ancient India. Genet Resour Crop Evol 65:285–305CrossRefGoogle Scholar
  27. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346CrossRefGoogle Scholar
  28. Gould KS, Dudle DA, Neufeld HS (2010) Why some stems are red: cauline anthocyanins shield photosystem II against high light stress. J Exp Bot 61:2707–2717CrossRefGoogle Scholar
  29. Greenbaum G, Templeton AR, Zarmi Y, Bar-David S (2014) Allelic richness following population founding events- a stochastic modeling framework incorporating gene flow and genetic drift. PLoS One 9:e115203CrossRefGoogle Scholar
  30. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  31. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  32. Hou Y, Nowak MD, MirrÈ V, Bjor CS, Brochmann C, Popp M (2015) Thousands of RAD-seq loci fully resolve the phylogeny of the highly disjunct Arctic-Alpine genus Diapensia (Diapensiaceae). PLoS One 10:e0140175CrossRefGoogle Scholar
  33. Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9:e102448CrossRefGoogle Scholar
  34. Islam M, Saito JA, Emdad E, Ahmed B, Islam M, Halim A et al (2017) Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants 3:16223CrossRefGoogle Scholar
  35. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  36. Jeffreys H (1961) Theory of probability. Oxford University Press, OxfordGoogle Scholar
  37. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefGoogle Scholar
  38. Kar CS, Kundu A, Sarkar D, Sinha MK, Mahapatra BS (2009) Genetic diversity in jute (Corchorus spp.) and its utilization: a review. Indian J Agric Sci 79:575–586Google Scholar
  39. Kar CS, Satya P, Mitra J, Sarkar D, Sinha MK, Kundu A et al (2010) Varietal development of jute and allied fibres in India. Indian Farm 60:5–9Google Scholar
  40. Kundu BC (1951) Origin of jute. Indian J Genet Plant Breed 11:95–99Google Scholar
  41. Kundu A, Topdar N, Sarkar D, Sinha MK, Ghosh A, Banerjee S et al (2013) Origins of white (Corchorus capsularis L.) and dark (C. olitorius L.) jute: a reevaluation based on nuclear and chloroplast microsatellites. J Plant Biochem Biotechnol 22:372–381CrossRefGoogle Scholar
  42. Kundu A, Chakraborty A, Mandal NA, Das D, Karmakar PG, Singh NK et al (2015) A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.). Mol Breed 35:19CrossRefGoogle Scholar
  43. Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of theory of selective neutrality of polymorphisms. Genetics 74:175–195Google Scholar
  44. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefGoogle Scholar
  45. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  46. Liu T, Tang S, Zhu S, Tang Q, Zheng X (2014) Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol 86:85–92CrossRefGoogle Scholar
  47. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215CrossRefGoogle Scholar
  48. Luu K, Bazin E, Blum MGB (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17:67–77CrossRefGoogle Scholar
  49. Mahapatra AK, Saha A, Gupta D (2006) Catalogue on evaluation of tossa jute germplasm (Corchorus olitorius L.). Central Research Institute for Jute and Allied Fibres, KolkataGoogle Scholar
  50. Marroni F, Pinosio S, Zaina G, Fogolari F, Felice N, Cattonaro F et al (2011) Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genet Genomes 7:1011–1023CrossRefGoogle Scholar
  51. Meirmans PG (2012) AMOVA-based clustering of population genetic data. J Hered 103:744–750CrossRefGoogle Scholar
  52. Meirmans PG, Hedrick PW (2011) Assessing population structure: F ST and related measures. Mol Ecol Resour 11:5–18CrossRefGoogle Scholar
  53. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  54. Moore AD, Held A, Terrapon N, Weiner J, Bornberg-Bauer E (2014) DoMosaics: software for domain arrangement visualization and domain-centric analysis of proteins. Bioinformatics 30:282–283CrossRefGoogle Scholar
  55. Mu C, Chen N, Li X, Jia P, Wang Z, Liu H (2010) F-box protein Arabidillo-1 promotes lateral root development by depressing the functioning of GA3 in Arabidopsis. J Plant Biol 53:374–380CrossRefGoogle Scholar
  56. Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK et al (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21:2473–2484CrossRefGoogle Scholar
  57. Narum SR, Hess JE (2011) Comparison of F ST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194CrossRefGoogle Scholar
  58. Narum SR, Buerkle AC, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847CrossRefGoogle Scholar
  59. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170CrossRefGoogle Scholar
  60. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354CrossRefGoogle Scholar
  61. Pan Y, Wang X, Sun G, Li F, Gong X (2016) Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae). PLoS One 11:e0166419CrossRefGoogle Scholar
  62. Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genom 14:1–9CrossRefGoogle Scholar
  63. Pérez-Figueroa A, García-Pereira MJ, Saura M, Rolán-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276CrossRefGoogle Scholar
  64. Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ (2014) PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol 31:1929–1936CrossRefGoogle Scholar
  65. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  66. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  67. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484CrossRefGoogle Scholar
  68. Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242CrossRefGoogle Scholar
  69. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  70. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  71. Roy A, Bandyopadhyay A, Mahapatra AK, Ghosh SK, Singh NK, Bansal KC et al (2006) Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed 125:292–297CrossRefGoogle Scholar
  72. Sarkar D, Mahato AK, Satya P, Kundu A, Singh S, Jayaswal PK et al (2017a) The draft genome of Corchorus olitorius cv. JRO-524 (Navin). Genom Data 12:151–154CrossRefGoogle Scholar
  73. Sarkar D, Menor C, Singh NK (2017b) Does RNA-seq-based Eukaryotic GeneFinding of Blast2GO require repeat-masking the whole genome shotgun (WGS) sequence? A case study in jute (Corchorus olitorius L., Malvaceae s. l.). BioBam Bioinformatics S. L. https://www.blast2go.com/support/blog/22-blast2goblog/178-is-repeat-masking-necessary-in-blast2go. Accessed 24 Jul 2017
  74. Satya P, Banerjee R, Biswas C, Karan M, Ghosh S, Ali N (2014a) Genetic analysis of population structure using peroxidase gene and phenylalanine ammonia-lyase gene-based DNA markers: a case study in jute (Corchorus spp.). Crop Sci 54:1609–1620CrossRefGoogle Scholar
  75. Satya P, Karan M, Chakraborty K, Biswas C, Karmakar PG (2014b) Comparative analysis of diversification and population structure of kenaf (Hibiscus cannabinus L.) and roselle (H. sabdariffa L.) using SSR and RGA (resistance gene analogue) markers. Plant Syst Evol 300:1209–1218CrossRefGoogle Scholar
  76. Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7:46137CrossRefGoogle Scholar
  77. Soto-Cerda BJ, Cloutier S (2013) Outlier loci and selection signatures of simple sequence repeats (SSRs) in flax (Linum usitatissimum L.). Plant Mol Biol Rep 31:978–990CrossRefGoogle Scholar
  78. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800CrossRefGoogle Scholar
  79. Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504CrossRefGoogle Scholar
  80. Takezaki N, Nei M, Tamura K (2014) POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol Biol Evol 31:1622–1624CrossRefGoogle Scholar
  81. Valdisser PAMR, Pappas GJ, Menezes IPP, Müller BSF, Pereira WJ, Narciso MG et al (2016) SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis. Mol Genet Genom 291:1277–1291CrossRefGoogle Scholar
  82. Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc Lond B Biol Sci 278:2–8CrossRefGoogle Scholar
  83. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253CrossRefGoogle Scholar
  84. Winters CA (2010) Y-chromosome evidence of an African origin of Dravidian agriculture. Int J Genet Mol Biol 2:30–33Google Scholar
  85. Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S et al (2014) Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. Plant J 77:430–442CrossRefGoogle Scholar
  86. Yang Z, Yan A, Lu R, Dai Z, Tang Q, Cheng C et al (2017) De novo transcriptome sequencing of two cultivated jute species under salinity stress. PLoS One 12:e0185863CrossRefGoogle Scholar
  87. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRefGoogle Scholar
  88. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefGoogle Scholar
  89. Zhang L, Yuan M, Tao A, Xu J, Lin L, Fang P et al (2015) Genetic structure and relationship analysis of an association population in jute (Corchorus spp.) evaluated by SSR markers. PLoS One 10:e0128195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Debabrata Sarkar
    • 1
    Email author
  • Avijit Kundu
    • 1
    • 2
  • Debajeet Das
    • 1
  • Avrajit Chakraborty
    • 1
  • Nur Alam Mandal
    • 1
  • Pratik Satya
    • 1
  • Pran Gobinda Karmakar
    • 1
  • Chandan Sourav Kar
    • 1
  • Jiban Mitra
    • 1
  • Nagendra Kumar Singh
    • 3
  1. 1.Biotechnology Unit, Division of Crop ImprovementICAR-Central Research Institute for Jute and Allied Fibres (CRIJAF)KolkataIndia
  2. 2.Department of Genetics and Plant BreedingNorth Bengal Agricultural UniversityCooch BeharIndia
  3. 3.Rice Genome LabICAR-National Research Centre on Plant Biotechnology (NRCPB)New DelhiIndia

Personalised recommendations