Advertisement

Identification and classification of differentially expressed genes in pyrethroid-resistant Culex pipiens pallens

  • Na Xu
  • Xiao-Hong Sun
  • Zhi-Han Liu
  • Yang Xu
  • Yan Sun
  • Dan Zhou
  • Bo ShenEmail author
  • Chang-Liang ZhuEmail author
Original Article

Abstract

Culex pipiens pallens is an important vector that transmits Bancroftian filariasis, Japanese encephalitis and other diseases that pose a serious threat to human health. Extensive and improper use of insecticides has caused insecticide resistance in mosquitoes, which has become an important obstacle to the control of mosquito-borne diseases. It is crucial to investigate the underlying mechanism of insecticide resistance. The aims of this study were to identify genes involved in insecticide resistance based on the resistance phenotype, gene expression profile and single-nucleotide polymorphisms (SNPs) and to screen for major genes controlling insecticide resistance. Using a combination of SNP and transcriptome data, gene expression quantitative trait loci (eQTLs) were studied in deltamethrin-resistant mosquitoes. The most differentially expressed pathway in the resistant group was identified, and a regulatory network was built using these SNPs and the differentially expressed genes (DEGs) in this pathway. The major candidate genes involved in the control of insecticide resistance were analyzed by qPCR, siRNA microinjection and CDC bottle bioassays. A total of 85 DEGs that encoded putative detoxification enzymes (including 61 P450s) were identified in this pathway. The resistance regulatory network was built using SNPs, and these metabolic genes, and a major gene, CYP9AL1, were identified. The functional role of CYP9AL1 in insecticide resistance was confirmed by siRNA microinjection and CDC bottle bioassays. Using the eQTL approach, we identified important genes in pyrethroid resistance that may aid in understanding the mechanism underlying insecticide resistance and in targeting new measures for resistance monitoring and management.

Keywords

Culex pipiens pallens Deltamethrin resistance eQTL P450s Regulatory network 

Notes

Acknowledgements

We thank Meng-Xue Hu for her assistance with mosquito collection.

Author contributions

BS, C-LZ and NX conceived the study. NX collected the data and performed the experiment. X-HS performed the data analysis. Z-HL performed the supplementary experiment duiring revision. YX, DZ and YS supported the development of the statistical methodology. NX and BS drafted the manuscript. All authors critically reviewed, read and approved the final manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers 81471984, 81672056, 81672058 and 81772227), the National Institutes of Health (NIH) of the USA (Grant number 2R01AI075746) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2018_1521_MOESM1_ESM.xls (36 kb)
Supplementary material 1 (XLS 35 KB)
438_2018_1521_MOESM2_ESM.xls (10.1 mb)
Supplementary material 2 (XLS 10302 KB)
438_2018_1521_MOESM3_ESM.xls (45.4 mb)
Supplementary material 3 (XLS 46466 KB)
438_2018_1521_MOESM4_ESM.xls (372 kb)
Supplementary material 4 (XLS 372 KB)
438_2018_1521_MOESM5_ESM.xls (313 kb)
Supplementary material 5 (XLS 312 KB)
438_2018_1521_MOESM6_ESM.xls (199 kb)
Supplementary material 6 (XLS 198 KB)
438_2018_1521_MOESM7_ESM.xls (72 kb)
Supplementary material 7 (XLS 71 KB)
438_2018_1521_MOESM8_ESM.xls (41 kb)
Supplementary material 8 (XLS 41 KB)
438_2018_1521_MOESM9_ESM.xls (44 kb)
Supplementary material 9 (XLS 44 KB)
438_2018_1521_MOESM10_ESM.xls (3.6 mb)
Supplementary material 10 (XLS 3638 KB)

References

  1. Acevedo MA, Prosper O, Lopiano K, Ruktanonchai N, Caughlin TT, Martcheva M, Osenberg CW, Smith DL (2015) Spatial heterogeneity, host movement and mosquito-borne disease transmission. PLoS One 10(6):e0127552CrossRefGoogle Scholar
  2. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195CrossRefGoogle Scholar
  3. Aizoun N, Aikpon R, Padonou GG, Oussou O, Oke-Agbo F, Gnanguenon V, Osse R, Akogbeto M (2013) Mixed-function oxidases and esterases associated with permethrin, deltamethrin and bendiocarb resistance in Anopheles gambiae s.l. in the southnorth transect Benin, West Africa. Parasit Vectors 6:223CrossRefGoogle Scholar
  4. Audic S, Claverie JM (1997) The signifcance of digital gene expression profles. Genome Res 7:986–995CrossRefGoogle Scholar
  5. Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H (2012) Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis 6(6):e1692CrossRefGoogle Scholar
  6. Bass C, Puinean AM, Andrews M, Cutler P, Daniels M, Elias J, Paul VL, Crossthwaite AJ, Denholm I, Field LM, Foster SP, Lind R, Williamson MS, Slater R (2011) Mutation of a nicotinic acetylcholine receptor b subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci 12(1):51CrossRefGoogle Scholar
  7. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statist 29:1165–1188CrossRefGoogle Scholar
  8. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507CrossRefGoogle Scholar
  9. Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Zhong D, Li J, Githeko A, Yan G (2012) Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-SEq. PloS One 7(9):e44607CrossRefGoogle Scholar
  10. Canales M, Naranjo V, Almazan C, Molina R, Tsuruta SA, Szabo MP, Manzano-Roman R, Pérez de la Lastra JM, Kocan KM, Jiménez MI, Lucientes J, Villar M, de la Fuente J (2009) Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, subolesin. Parasitol Res 105:97–111CrossRefGoogle Scholar
  11. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242CrossRefGoogle Scholar
  12. Collins FS, Green ED, Guttmacher AE, Guyer MS, Institute USNHGR (2003) A vision for the future of genomics research. Nature 422(6934):835–847CrossRefGoogle Scholar
  13. Edi CV, Djogbenou L, Jenkins AM, Regna K, Muskavitch MA, Poupardin R, Jones CM, Essandoh J, Kétoh GK, Paine MJ, Koudou BG, Donnelly MJ, Ranson H, Weetman D (2014) CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet 10:e1004236CrossRefGoogle Scholar
  14. Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, Girod R, Poupardin R, Boyer F, Reynaud S, David JP (2017) In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: an integrated next-generation sequencing approach. PLoS Negl Trop Dis 11(4)Google Scholar
  15. Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, Tatem AJ, Hay SI (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10:378CrossRefGoogle Scholar
  16. Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HF, Price RN, Müeller I, Baird JK, Hay SI (2012) A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6(9):e1814CrossRefGoogle Scholar
  17. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484CrossRefGoogle Scholar
  18. Kasai S, Scott JG (2000) Over-expression of cytochrome P450 CYP6D1 is associated with mono-oxygenase-mediated pyrethroid resistance in house flies from Georgia. Pestic Biochem Physiol 68:34–41CrossRefGoogle Scholar
  19. Komagata O, Kasai S, Tomita T (2010) Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem Mol Biol 40(2):146–152CrossRefGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  21. Lv Y, Wang W, Hong S, Lei Z, Fang F, Guo Q, Hu S, Tian M, Liu B, Zhang D, Sun Y, Ma L, Shen B, Zhou D, Zhu C (2016) Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-sEq. Mol Genet Genom 291(1):309–321CrossRefGoogle Scholar
  22. Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JM (2005) Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol 14:365–373CrossRefGoogle Scholar
  23. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNASEq. Nat Methods 5:621–628CrossRefGoogle Scholar
  24. Nikou D, Ranson H, Hemingway J (2003) An adult-specific CYP6 P450 gene is over expressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318:91–102CrossRefGoogle Scholar
  25. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R (2012) Evolution of supergene families associated with insecticide resistance. Science 298(5591):179–181CrossRefGoogle Scholar
  26. Reddy BN, Rao BP, Prasad G, Raghavendra K (2012) Identification and classification of detoxificationenzymes from Culex quinquefasciatus (Diptera: Culicidae). Bioinformation 8(9):430–436CrossRefGoogle Scholar
  27. Rivero A, Vezilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:e1001000CrossRefGoogle Scholar
  28. Saisawang C, Wongsantichon J, Ketterman AJ (2012) A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem J 442(1):181–190CrossRefGoogle Scholar
  29. Scott JG, Yoshimizu MH, Kasai S (2015) Pyrethroid resistance in Culex pipiens mosquitoes. Pestic Biochem Physiol 120:68–76CrossRefGoogle Scholar
  30. Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC, Ranson H (2008) Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 38(1):113–123CrossRefGoogle Scholar
  31. Tian M, Liu B, Hu H, Li X, Guo Q, Zou F, Liu X, Hu M, Guo J, Ma L, Zhou D, Sun Y, Shen B, Zhu C (2016) MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol Res 115(12):4511–4517CrossRefGoogle Scholar
  32. Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262(1–2):189–198CrossRefGoogle Scholar
  33. Varmus H, Klausner R, Zerhouni E, Acharya T, Daar AS, Singer PA (2003) Public health. Grand challenges in global health. Science 302(5644):398–399CrossRefGoogle Scholar
  34. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138CrossRefGoogle Scholar
  35. Wang ZM, Li CX, Xing D, Yu YH, Liu N, Xue RD, Dong YD, Zhao TY (2012) Detection and widespread distribution of sodium channel alleles characteristic of insecticide resistance in Culex pipiens complex mosquitoes in China. Med Vet Entomol 26:228–232CrossRefGoogle Scholar
  36. WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization, GenevaGoogle Scholar
  37. Yan L, Yang P, Jiang F, Cui N, Ma E, Qiao C, Cui F (2012) Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families. BMC Genom 13:609CrossRefGoogle Scholar
  38. Yang T, Liu N (2011) Genome analysis of cytochrome P450s and their expression profles in insecticide resistant mosquitoes Culex quinquefasciatus. PLoS One 6:e29418CrossRefGoogle Scholar
  39. Zhang C, Wang G, Wang J, Ji Z, Liu Z, Pi X, Chen C (2013) Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLoS One 8:e72686CrossRefGoogle Scholar
  40. Zhang YL, Wang YM, Wang LH, Yao J, Guo HF, Fang JC (2016) Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén). Pestic Biochem Physiol 127:21–27CrossRefGoogle Scholar
  41. Zhao L, Zhang N, Ma PF, Liu Q, Li DZ, Guo ZH (2013) Statistical summary of contigs and final transcripts assembled by Trinity and TGICL. Plos One 10:23Google Scholar
  42. Zhu M, Yu M, Zhao S (2009) Understanding quantitative genetics in the systems biology era. Int J Biol Sci 5(2):161–170CrossRefGoogle Scholar
  43. Zou FF, Guo Q, Sun Y, Zhou D, Hu MX, Hu HX, Liu BQ, Tian MM, Liu XM, Li XX, Ma L, Shen B, Zhu CL (2016) Identification of protease m1 zinc metalloprotease conferring resistance to deltamethrinby characterization of an AFLP marker in Culex pipiens pallens. Parasit Vectors 9:172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xuzhou Central HospitalXuzhouPeople’s Republic of China
  2. 2.Department of Pathogen BiologyNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Key Laboratory of Pathogen Biology of Jiangsu ProvinceNanjingPeople’s Republic of China

Personalised recommendations