Advertisement

Molecular Genetics and Genomics

, Volume 294, Issue 2, pp 365–378 | Cite as

Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.)

  • Pawan Khera
  • Manish K. Pandey
  • Nalini Mallikarjuna
  • Manda Sriswathi
  • Manish Roorkiwal
  • Pasupuleti Janila
  • Shivali Sharma
  • Krishna Shilpa
  • Harikishan Sudini
  • Baozhu Guo
  • Rajeev K. VarshneyEmail author
Original Article

Abstract

Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, two synthetic tetraploids, viz., ISATGR 1212 (A. duranensis ICG 8123 × A. ipaensis ICG 8206) and ISATGR 265-5A (A. kempff-mercadoi ICG 8164 × A. hoehnei ICG 8190), were used to generate two advanced backcross (AB) populations. The AB-populations, namely, AB-pop1 (ICGV 91114 × ISATGR 1212) and AB-pop2, (ICGV 87846 × ISATGR 265-5A) were genotyped with DArT and SSR markers. Genetic maps were constructed for AB-pop1 and AB-pop2 populations with 258 loci (1415.7 cM map length and map density of 5.5 cM/loci) and 1043 loci (1500.8 cM map length with map density of 1.4 cM/loci), respectively. Genetic analysis identified large number of wild segments in the population and provided a good source of diversity in these populations. Phenotyping of these two populations identified several introgression lines with good agronomic, oil quality, and disease resistance traits. Quantitative trait locus (QTL) analysis showed that the wild genomic segments contributed favourable alleles for foliar disease resistance while cultivated genomic segments mostly contributed favourable alleles for oil quality and yield component traits. These populations, after achieving higher stability, will be useful resource for genetic mapping and QTL discovery for wild species segments in addition to using population progenies in breeding program for diversifying the gene pool of cultivated groundnut.

Keywords

DArT markers Genetic map Trait mapping Introgression lines Wild crop relatives Groundnut 

Notes

Acknowledgements

We acknowledge the help and support from researchers of University of Agricultural Sciences- Dharwad and University of Agricultural Sciences-Raichur in conducting part of disease screening experiment. Funding support from Bill & Melinda Gates Foundation (Tropics Legumes I, II, and III) is greatly acknowledged. This work has been undertaken as a part of the CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC). ICRISAT is a member of CGIAR Consortium.

Author contributions

RKV conceived experiment. RKV, MKP, and NM designed and supervised the experiments. MKP, MS, MR, PJ, SS, KS, NM, and HS performed the experiment. PK, MKP, RKV, and BG analyzed the data. PK, MKP, and RKV wrote the manuscript.

Supplementary material

438_2018_1511_MOESM1_ESM.tif (973 kb)
Supplementary material 1 (TIF 973 KB)
438_2018_1511_MOESM2_ESM.tif (2.1 mb)
Supplementary material 2 (TIF 2178 KB)
438_2018_1511_MOESM3_ESM.xlsx (21 kb)
Supplementary material 3 (XLSX 20 KB)
438_2018_1511_MOESM4_ESM.xlsx (552 kb)
Supplementary material 4 (XLSX 552 KB)
438_2018_1511_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 10 KB)
438_2018_1511_MOESM6_ESM.xlsx (11 kb)
Supplementary material 6 (XLSX 10 KB)
438_2018_1511_MOESM7_ESM.xlsx (12 kb)
Supplementary material 7 (XLSX 12 KB)

References

  1. Abbo S, Lev-Yadunb S, Gopher A (2012) Plant domestication and crop evolution in the near east: on events and processes. Crit Rev Plant Sci 31:241–257CrossRefGoogle Scholar
  2. Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19:351–360CrossRefGoogle Scholar
  3. Basu MS (1995) Peanut bud necrosis disease: activities in the Indian national programme. In: Buiel AAM, Parlevliet JE and Lenne JM (eds) Recent studies on peanut bud necrosis disease, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp. 61–63Google Scholar
  4. Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Guimarães PM, Leal-Bertioli SCM, Knapp SJ, Moretzsohn MC (2014a) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 4:89–96Google Scholar
  5. Bertioli DJ, Araujo ACG, Nielen S, Heslop-Harrison P, Guimarães PM, Schwarzacher T, Isobe S, Shirasawa K (2014b) An overview of peanut genome structure. Mallikarjuna N, Varshney RK (eds) In genetics, genomics and breeding of peanuts. Genetics, genomics and breeding of crop plant. CRC Press, Boca Raton, pp 114–138Google Scholar
  6. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Wei W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo ACG, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SCM, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48, 438–446CrossRefGoogle Scholar
  7. Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize teosinte backcross resource. Genetics 177:1915–1928CrossRefGoogle Scholar
  8. Burrow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.) broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837Google Scholar
  9. Burrow MD, Starr JL, Park C, Simpson CE, Paterson AH (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.) 34: 393–406Google Scholar
  10. Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya HD, Guo H, Khan AW, Zhu F, Zhang X, Pan L, Pierce GJ, Zhou G, Krishnamohan KAVS, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G, Sharma S, Chen N, Liu N, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z, Paterson AH, Wang S, Liang X, Varshney RK, Yu S (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis and allergens. Proc Natl Acad Sci (PNAS)-USA 113(24):6785–6790Google Scholar
  11. Doyle JJ and Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11–15.Google Scholar
  12. Fonceka D, Tossim H, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann J, Courtois B, Rami J (2012a) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26CrossRefGoogle Scholar
  13. Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, Bellis F, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012b) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7: e48642CrossRefGoogle Scholar
  14. Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9: 103CrossRefGoogle Scholar
  15. Garcia GM, Stalker HT, Schroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845CrossRefGoogle Scholar
  16. Gayathri, M., Shirasawa, K., Varshney, R. K., Pandey, M. K. and Bhat, R. S., 2018, Development of new AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes.  https://doi.org/10.1186/s13104-13017-13121-13108.Google Scholar
  17. Gowda MVC, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: a Spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis Newsl 22:29–32Google Scholar
  18. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987CrossRefGoogle Scholar
  19. Halward TM, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384CrossRefGoogle Scholar
  20. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Yi, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97CrossRefGoogle Scholar
  21. Khera P, Upadhyaya HD, Pandey MK, Roorkiwal M, Sriswathi M, Janila P, Guo Y, McKain MR, Nagy ED, Knapp SJ, Leebens-Mack J, Conner JA, Ozias-Akins P, Varshney RK (2013a) Single nucleotide polymorphism-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. The Plant Genome 6(3)Google Scholar
  22. Khera P, Pandey MK, Varshney RK (2013b) Pest and diseases: Old and new threats-modern breeding tools to tailor new crop cultivars. Sécheresse 24:261–273Google Scholar
  23. Kochert G, Stalker HT, Gimenes MA, Galgaro ML, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  24. Koinange EMK, Singh SP, Gepts PL (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045CrossRefGoogle Scholar
  25. Koppolu R, Upadhyaya HD, Dwivedi SL, Hoisington DA, Varshney RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol 10:15CrossRefGoogle Scholar
  26. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  27. Kumari V (2013) Introgression of foliar disease resistance using synthetic amphidiploids and identification of associated QTLs in groundnut (Arachis hypogaea L.). Ph. D. Thesis, University of Agricultural Sciences (UAS), Dharwad, India. http://krishikosh.egranth.ac.in/handle/1/69991.
  28. Kumari V, Gowda MVC, Tasiwal V, Pandey MK, Bhat RS, Mallikarjuna N, Upadhyaya HD, Varshney RK (2014) Diversification of primary gene pool through introgression of resistance allele for foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J 2 (2–3): 110–119.CrossRefGoogle Scholar
  29. Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong academy of agricultural sciences. Peanut Sci 36:29–34CrossRefGoogle Scholar
  30. Mace ES, Buhariwalla HK, Crouch JH (2003) A high throughput DNA extraction protocol for molecular breeding programs. Plant Mol Biol Rep 21:459a-459 hCrossRefGoogle Scholar
  31. Mallikarjuna N, Senthilvel S, and Hoisington D (2011a) Development of synthetic groundnuts (Arachis hypogaea L) to broaden the genetic base of cultivated groundnut. Genetic Resour Crop Evol 58:889–907CrossRefGoogle Scholar
  32. Mallikarjuna N, Senapathy S, Jadhav DR, Saxena K, Sharma HC, Upadhyaya HD, Rathore A, Varshney R (2011b) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed 130:507–514CrossRefGoogle Scholar
  33. Metcalf LP, Schmitz AA, Pelka JK (1996) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:514–515CrossRefGoogle Scholar
  34. Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70CrossRefGoogle Scholar
  35. Pandey MK, Varshney RK (2018) Groundnut entered post-genome sequencing era: opportunities and challenges in translating genomic information from genome to field. In “Biotechnologies in Crop Improvement Vol 3 (eds SS Gosal and SH Wani), Springer International Publishing,  https://doi.org/10.1007/978-3-319-94746-4_9.
  36. Pandey MK, Monyo ES, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. J Biotech Adv 30:639–651CrossRefGoogle Scholar
  37. Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2014a) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.) BMC Genet 15:133CrossRefGoogle Scholar
  38. Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, F Hamidou, Kumar VA, Khera P, Bhat RS, Khan AW, Singh S, Li H, Monyo E, Nadaf HL, Mukri G, Jackson SA, Guo B, Liang X, Varshney RK (2014b) Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9:e113326CrossRefGoogle Scholar
  39. Pandey MK, Roorkiwal M, Singh V, Lingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future perspectives. Front Plant Sci 7:455Google Scholar
  40. Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD, Vishwakarma MK, Leal-Bertioli S, Liang X, Bertioli DJ, Guo B, Jackson SA, Ozias-Akins P, Varshney RK (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577.CrossRefGoogle Scholar
  41. Paratwagh SA, Bhat RS (2015) Development of superior introgression lines for resistance to foliar diseases and productivity in groundnut (Arachis hypogaea L.). Electron J Plant Breed 6(4):1034–1040.Google Scholar
  42. Sharma S, Upadhyaya HD, Varshney RK and Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309Google Scholar
  43. Sharma S, Pandey MK, Sudini HK, Mallikarjuna N, Upadhyaya HD, Varshney RK (2017) Harnessing genetic diversity of wild Arachis species for genetic enhancement of cultivated peanut. Crop Sci 57(1):1–11CrossRefGoogle Scholar
  44. Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Nigam SN, Guo B, Varshney RK (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut. Front Plant Sci 8:794.CrossRefGoogle Scholar
  45. Shilpa K, Sunkad G, Kurella S, Marri S, Padmashree K, Jadhav DR, Sahrawat KL, Mallikarjuna N (2013) Biochemical composition and disease resistance in newly synthesized amphidiploid and autotetraploid peanuts. Food Nutr Sci 4:169–176Google Scholar
  46. Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, Pandey MK, Rami JF, Foncéka D, Gowda MV, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20:173–84CrossRefGoogle Scholar
  47. Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18:22–26CrossRefGoogle Scholar
  48. Stalker HT (2013) Peanut. In: Singh M, Upadhyaya HD, Bisht IS (eds). Genetic and genomic resources of grain legume improvement. 203–235Google Scholar
  49. Subbarao PV, Subrahmanyam P, Reddy PM (1990) A modified nine point disease scale for assessment of rust and late leaf spot of groundnut. 2nd International Congress of French Phytopathological Society, 28–30 November 1990, Montpellier, p. 25.Google Scholar
  50. Sunkad G, Kenchanagoudar PV, Naragund VB (2001) Identification of sources for field resistance to peanut bud necrosis disease in groundnut. Karnataka J Agric Sci 15:646–648Google Scholar
  51. Sweeney M, McCouch S (2007) The complex history of the domestication of rice. Ann Bot 100:951–957CrossRefGoogle Scholar
  52. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203CrossRefGoogle Scholar
  53. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  54. Varshney RK, Nayak SN, May GD, Jackson SA (2009a) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27: 522–530CrossRefGoogle Scholar
  55. Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009b) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor. Appl. Genet 118:729–739CrossRefGoogle Scholar
  56. Varshney RK, Thudi M, May GD, Jackson SA (2010) Legume genomics and breeding. Plant Breed Rev 33:257–304Google Scholar
  57. Varshney RK, Murali Mohan S, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj Ch, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotech Adv 31:1120–1134CrossRefGoogle Scholar
  58. Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MV, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781CrossRefGoogle Scholar
  59. Vishwakarma MK, Pandey MK, Shasidhar Y, Manohar SS, Nagesh P, Janila P, Varshney RK (2016) Identification of two major QTLs for fresh seed dormancy using the DArT and DArT-seq based genetic map in Spanish type peanuts. Plant Breed 135(3):367–375CrossRefGoogle Scholar
  60. Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Pandey MK, Varshney RK (2017a) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Front Plant Sci 8:2064CrossRefGoogle Scholar
  61. Vishwakarma MK, Nayak SN, Guo B, Wan L, Liao B, Varshney RK, Pandey MK (2017b) Classical and molecular approaches for mapping of genes and quantitative trait loci in peanut (Arachis hypogaea L.). In: RK Varshney, MK Pandey, N Puppala (eds) The peanut genome. ISBN:978-3-319-63935-2; 93–116Google Scholar
  62. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77–78CrossRefGoogle Scholar
  63. Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
  64. Wang H, Pandey MK, Qiao L, Qin H, Culbreath AK, He G, Varshney RK, Guo B (2013) Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). Plant Genome 6:3CrossRefGoogle Scholar
  65. Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.) PLoS One 10:e0119454CrossRefGoogle Scholar
  66. Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli DJ, Varshney RK, Pandey MK, Wang X (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci 8:1209CrossRefGoogle Scholar
  67. Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genom 15:351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  2. 2.Crop Protection and Management Research Unit, US Department of Agriculture-Agricultural Research ServiceTiftonUSA

Personalised recommendations