Advertisement

First report on B chromosome content in a reptilian species: the case of Anolis carolinensis

  • Ilya G. Kichigin
  • Artem P. Lisachov
  • Massimo Giovannotti
  • Alex I. Makunin
  • Marsel R. Kabilov
  • Patricia C. M. O’Brien
  • Malcolm A. Ferguson-Smith
  • Alexander S. Graphodatsky
  • Vladimir A. Trifonov
Original Article

Abstract

Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.

Keywords

Squamata Supernumerary chromosomes High-throughput sequencing DOP-PCR Carolina anole 

Notes

Funding

The study was funded by the Russian Science Foundation (RSF, 16-14-10009) and by the Russian Foundation for Basic Research (RFBR, 16-04-00087).

Compliance with ethical standards

Conflict of interest

The authors declare they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2018_1483_MOESM1_ESM.xls (13 kb)
Supplementary material 1 (XLS 13 KB)
438_2018_1483_MOESM2_ESM.doc (27 kb)
Supplementary material 2 (DOC 27 KB)
438_2018_1483_MOESM3_ESM.xls (89 kb)
Supplementary material 3 (XLS 89 KB)

References

  1. Adams RR, Wheatleya SP, Gouldsworthy AM et al (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10:1075–1078.  https://doi.org/10.1016/S0960-9822(00)00673-4 CrossRefPubMedGoogle Scholar
  2. Alföldi J, Di Palma F, Grabherr M et al (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591.  https://doi.org/10.1038/nature10390 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151(1569):1569–1579 151PubMedPubMedCentralGoogle Scholar
  4. Basheva EA, Torgasheva AA, Sakaeva GR et al (2010) A- and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosome Res 18:689–696.  https://doi.org/10.1007/s10577-010-9149-4 CrossRefPubMedGoogle Scholar
  5. Beçak ML, Beçak W, Denaro L (1972) Chromosome polymorphism, geographical variation and Karyotypes in Sauria. Caryologia 25:313–326.  https://doi.org/10.1080/00087114.1972.10796485 CrossRefGoogle Scholar
  6. Becker SED, Thomas R, Trifonov VA et al (2011) Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Res 19:685.  https://doi.org/10.1007/s10577-011-9233-4 CrossRefPubMedGoogle Scholar
  7. Bertolotto CEV, Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y (2002) Comparative cytogenetics and supernumerary chromosomes in the Brazilian lizard genus Enyalius (Squamata, Polychrotidae). Hereditas 136:51–57.  https://doi.org/10.1034/j.1601-5223.2002.1360108.x CrossRefGoogle Scholar
  8. Bertolotto CEV, Pellegrino KCM, Yonenaga-Yassuda Y (2004) Occurrence of B chromosomes in lizards: a review. CGR 106:243–246.  https://doi.org/10.1159/000079294 CrossRefGoogle Scholar
  9. Bezy RL, Gorman GC, Kim YJ, Wright JW (1977) Chromosomal and genetic divergence in the fossorial Lizards of the family Anniellidae. Syst Biol 26:57–71.  https://doi.org/10.1093/sysbio/26.1.57 CrossRefGoogle Scholar
  10. Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521CrossRefPubMedGoogle Scholar
  11. Blake JA (1986) Complex chromosomal variation in natural populations of the Jamaican lizard Anolis grahami. Genetica 69:3–17.  https://doi.org/10.1007/BF00122929 CrossRefGoogle Scholar
  12. Camacho JPM, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci 355:163–178.  https://doi.org/10.1098/rstb.2000.0556 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms. SnpEff Fly 6:80–92.  https://doi.org/10.4161/fly.19695 CrossRefPubMedGoogle Scholar
  14. Coleman JJ, Rounsley SD, Rodriguez-Carres M et al (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Gene 5:e1000618.  https://doi.org/10.1371/journal.pgen.1000618 CrossRefGoogle Scholar
  15. Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067.  https://doi.org/10.1083/jcb.105.5.2053 CrossRefPubMedGoogle Scholar
  16. DeBarry JD, Ganko EW, McCarthy EM, McDonald JF (2006) The contribution of LTR retrotransposon sequences to gene evolution in Mus musculus. Mol Biol Evol 23:479–481.  https://doi.org/10.1093/molbev/msj076 CrossRefPubMedGoogle Scholar
  17. Earnshaw WC, Bernat RL (1991) Chromosomal passengers: toward an integrated view of mitosis. Chromosoma 100:139–146.  https://doi.org/10.1007/BF00337241 CrossRefPubMedGoogle Scholar
  18. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405.  https://doi.org/10.1038/nrg2337 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gamble T, Geneva AJ, Glor RE, Zarkower D (2014) Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68:1027–1041.  https://doi.org/10.1111/evo.12328 CrossRefPubMedGoogle Scholar
  20. Ganko EW, Bhattacharjee V, Schliekelman P, McDonald JF (2003) Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol Biol Evol 20:1925–1931.  https://doi.org/10.1093/molbev/msg200 CrossRefPubMedGoogle Scholar
  21. Ganko EW, Greene CS, Lewis JA et al (2006) LTR retrotransposon-gene associations in Drosophila melanogaster. J Mol Evol 62:111–120.  https://doi.org/10.1007/s00239-004-0312-4 CrossRefPubMedGoogle Scholar
  22. Giovannotti M, Trifonov VA, Paoletti A et al (2017) New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae). Chromosoma 126:245–260.  https://doi.org/10.1007/s00412-016-0585-6 CrossRefPubMedGoogle Scholar
  23. Gorman GC (1973) The chromosomes of the reptilian: a cytotaxonomic interpretation. In: Chiarelli B, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic Press, London, pp 349–424Google Scholar
  24. Gorman GC, Atkins L, Thomas R (1968) Intra-and interspecific chromosome variation in the lizard Anolis cristatellus and its closest relatives. Breviora Mus Comp Zool 293:1–13Google Scholar
  25. Graphodatsky AS, Yang F, O’Brien PCM et al (2000) A comparative chromosome map of the arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res 8:253–263.  https://doi.org/10.1023/A:1009217400140 CrossRefPubMedGoogle Scholar
  26. Graphodatsky AS, Kukekova AV, Yudkin DV et al (2005) The proto-oncogene C-KIT maps to canid B-chromosomes. Chromosome Res 13:113–122.  https://doi.org/10.1007/s10577-005-7474-9 CrossRefPubMedGoogle Scholar
  27. Houben A, Banaei-Moghaddam AM, Klemme S (2013) Biology and evolution of B chromosomes. In: Plant genome diversity. Vol 2. Springer, Vienna, pp 149–165CrossRefGoogle Scholar
  28. Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.  https://doi.org/10.1038/nprot.2008.211 CrossRefGoogle Scholar
  29. Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13.  https://doi.org/10.1093/nar/gkn923 CrossRefGoogle Scholar
  30. Jones RN, Rees H (1982) B chromosomes. Academic Press, LondonGoogle Scholar
  31. Kichigin IG, Giovannotti M, Makunin AI et al (2016) Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA. Mol Genet Genom 291:1955–1966.  https://doi.org/10.1007/s00438-016-1230-z CrossRefGoogle Scholar
  32. Klemme S, Banaei-Moghaddam AM, Macas J et al (2013) High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol 199:550–558.  https://doi.org/10.1111/nph.12289 CrossRefPubMedGoogle Scholar
  33. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474.  https://doi.org/10.1186/1471-2105-7-474 CrossRefGoogle Scholar
  34. Kupriyanova LA (1984) B-chromosomes in the karyotype of Lacerta parva Boul. Genetica 52–53:223–226.  https://doi.org/10.1007/BF00121830 CrossRefGoogle Scholar
  35. Lamatsch DK, Trifonov V, Schories S et al (2011) Isolation of a cancer-associated microchromosome in the sperm-dependent parthenogen Poecilia formosa. CGR 135:135–142.  https://doi.org/10.1159/000331271 CrossRefGoogle Scholar
  36. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lisachov AP, Trifonov VA, Giovannotti M et al (2017) Heteromorphism of “homomorphic” sex chromosomes in two anole species (Squamata, Dactyloidae) revealed by synaptonemal complex analysis. CGR 151:89–95.  https://doi.org/10.1159/000460829 CrossRefGoogle Scholar
  38. Makunin AI, Dementyeva PV, Graphodatsky AS et al (2014) Genes on B chromosomes of vertebrates. Mol Cytogenet 7:99.  https://doi.org/10.1186/s13039-014-0099-y CrossRefPubMedPubMedCentralGoogle Scholar
  39. Makunin AI, Kichigin IG, Larkin DM et al (2016) Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genom 17:618.  https://doi.org/10.1186/s12864-016-2933-6 CrossRefGoogle Scholar
  40. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12.  https://doi.org/10.14806/ej.17.1.200 CrossRefGoogle Scholar
  41. Martis MM, Klemme S, Banaei-Moghaddam AM et al (2012) Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. PNAS 109:13343–13346.  https://doi.org/10.1073/pnas.1204237109 CrossRefPubMedGoogle Scholar
  42. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.  https://doi.org/10.1101/gr.107524.110 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mestriner CA, Galetti PM, Valentini SR et al (2001) Structural and functional evidence that a B chromosome in the characid fish Astyanax scabripinnis is an isochromosome. Heredity 85:1–9.  https://doi.org/10.1046/j.1365-2540.2000.00702.x CrossRefGoogle Scholar
  44. Navarro-Domínguez B, Ruiz-Ruano FJ, Cabrero J et al (2017) Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci Rep 7:45200.  https://doi.org/10.1038/srep45200 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378.  https://doi.org/10.1186/1471-2105-11-378 CrossRefGoogle Scholar
  46. Novák P, Neumann P, Pech J et al (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793.  https://doi.org/10.1093/bioinformatics/btt054 CrossRefPubMedGoogle Scholar
  47. Olmo E, Odierna G, Cobror O (1986) C-band variability and phylogeny of Lacertidae. Genetica 71:63–74.  https://doi.org/10.1007/BF00123234 CrossRefGoogle Scholar
  48. Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y (1999) Chromosomal polymorphisms due to supernumerary chromosomes and pericentric inversions in the eyelidless microteiid lizard Nothobachia Ablephara (Squamata, Gymnophthalmidae). Chromosome Res 7:247–254.  https://doi.org/10.1023/A:1009218628942 CrossRefPubMedGoogle Scholar
  49. Pellegrino KCM, Santos RML dos, Rodrigues MT et al (2009) Chromosomal evolution in the Brazilian Geckos of the Genus Gymnodactylus (Squamata, Phyllodactylidae) from the biomes of Cerrado, Caatinga and Atlantic Rain Forest: evidence of Robertsonian fusion events and supernumerary chromosomes. CGR 127:191–203.  https://doi.org/10.1159/000295175 CrossRefGoogle Scholar
  50. Peppers JA, Wiggins LE, Baker RJ (1997) Nature of B chromosomes in the harvest mouse Reithrodontomys megalotis by fluorescence in situ hybridization (FISH). Chromosome Res 5:475–479.  https://doi.org/10.1023/A:1018421114607 CrossRefPubMedGoogle Scholar
  51. Peters AHFM, Plug AW, Vugt MJ van, Boer P de (1997) A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res 5:66–68.  https://doi.org/10.1023/A:1018445520117 CrossRefPubMedGoogle Scholar
  52. Pfender S, Kuznetsov V, Pleiser S et al (2011) Spire-Type actin nucleators cooperate with formin-2 to drive asymmetric oocyte division. Curr Biol 21:955–960.  https://doi.org/10.1016/j.cub.2011.04.029 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Poe S, Nieto-montes de oca A, Torres-carvajal O et al (2017) A phylogenetic, biogeographic, and taxonomic study of all extant species of Anolis (Squamata; Iguanidae). Syst Biol 66:663–697.  https://doi.org/10.1093/sysbio/syx029 CrossRefPubMedGoogle Scholar
  54. Potapov VA, Solov’ev VV, Romashchenko AG et al (1990) Features of the structure and evolution of complex, tandemly organized Bsp-repeats in the fox genome. I. Structure and internal organization of the BamHI-dimer. Mol Biol (Mosk) 24:1649–1665Google Scholar
  55. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842.  https://doi.org/10.1093/bioinformatics/btq033 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila Spire is an actin nucleation factor. Nature 433:382–388.  https://doi.org/10.1038/nature03241 CrossRefPubMedGoogle Scholar
  57. Ruban A, Schmutzer T, Scholz U, Houben A (2017) How next-generation sequencing has aided our understanding of the sequence composition and origin of b chromosomes. Genes 8:294.  https://doi.org/10.3390/genes8110294 CrossRefPubMedCentralGoogle Scholar
  58. Rubtsov NB, Karamysheva TV, Andreenkova OV et al (2004) Comparative analysis of micro and macro B chromosomes in the Korean field mouse Apodemus peninsulae (Rodentia, Murinae) performed by chromosome microdissection and FISH. CGR 106:289–294.  https://doi.org/10.1159/000079301 CrossRefGoogle Scholar
  59. Serrato-Capuchina A, Matute DR (2018) The role of transposable elements in speciation. Genes 9:254.  https://doi.org/10.3390/genes9050254 CrossRefPubMedCentralGoogle Scholar
  60. Silva DMZ, de A, Pansonato-Alves, Utsunomia JC R, et al (2014) Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes). PLoS One 9:e94896.  https://doi.org/10.1371/journal.pone.0094896 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Stitou S, Guardia RD, de la Jiménez R, Burgos M (2000) Inactive ribosomal cistrons are spread throughout the B chromosomes of Rattus rattus (Rodentia, Muridae). Implications for their origin and evolution. Chromosome Res 8:305–311.  https://doi.org/10.1023/A:1009227427575 CrossRefPubMedGoogle Scholar
  62. Szczerbal I, Switonski M (2003) B chromosomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray) contain inactive NOR-like sequences. Caryologia 56:213–216.  https://doi.org/10.1080/00087114.2003.10589327 CrossRefGoogle Scholar
  63. Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725.  https://doi.org/10.1016/0888-7543(92)90147-K CrossRefPubMedGoogle Scholar
  64. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119:217–225.  https://doi.org/10.1007/s00412-009-0251-3 CrossRefPubMedGoogle Scholar
  65. Thompson P, Sites JW (1986) Two aberrant karyotypes in the sagebrush lizard (Sceloporus graciosus): triploidy and a “supernumerary” oddity. Great Basin Nat 46:224–227CrossRefGoogle Scholar
  66. Valente GT, Conte MA, Fantinatti BEA et al (2014) Origin and evolution of B chromosomes in the Cichlid Fish Astatotilapia latifasciata based on integrated genomic analyses. Mol Biol Evol 31:2061–2072.  https://doi.org/10.1093/molbev/msu148 CrossRefPubMedGoogle Scholar
  67. Vicari MR, Pistune HF, de M, Castro JP, et al (2011) New insights on the origin of B chromosomes in Astyanax scabripinnis obtained by chromosome painting and FISH. Genetica 139:1073.  https://doi.org/10.1007/s10709-011-9611-z CrossRefPubMedGoogle Scholar
  68. Webster TP, Hall WP, Williams EE (1972) Fission in the evolution of a lizard karyotype. Science 177:611–613CrossRefPubMedGoogle Scholar
  69. Wurster-Hill DH, Ward OG, Davis BH et al (1988) Fragile sites, telomeric DNA sequences, B chromosomes, and DNA content in raccoon dogs, Nyctereutes procyonoides, with comparative notes on foxes, coyote, wolf, and raccoon. CGR 49:278–281.  https://doi.org/10.1159/000132677 CrossRefGoogle Scholar
  70. Yang F, O’Brien PCM, Milne BS et al (1999) A Complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202.  https://doi.org/10.1006/geno.1999.5989 CrossRefPubMedGoogle Scholar
  71. Yonenaga-Yassuda Y, Rodrigues MT (1999) Supernumerary chromosome variation, heteromorphic sex chromosomes and banding patterns in Microteiid lizards of the Genus Micrablepharus (Squamata, Gymnophthalmidae). Chromosome Res 7:21–29.  https://doi.org/10.1023/A:1009219126909 CrossRefGoogle Scholar
  72. Yoshida K, Terai Y, Mizoiri S et al (2011) B Chromosomes have a functional effect on female sex determination in lake victoria cichlid fishes. PLoS Genet 7:e1002203.  https://doi.org/10.1371/journal.pgen.1002203 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ziegler CG, Lamatsch DK, Steinlein C et al (2003) The giant B chromosome of the cyprinid fish Alburnus alburnus harbours a retrotransposon-derived repetitive DNA sequence. Chromosome Res 11:23–35.  https://doi.org/10.1023/A:1022053931308 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ilya G. Kichigin
    • 1
  • Artem P. Lisachov
    • 2
  • Massimo Giovannotti
    • 3
  • Alex I. Makunin
    • 1
  • Marsel R. Kabilov
    • 4
  • Patricia C. M. O’Brien
    • 5
  • Malcolm A. Ferguson-Smith
    • 5
  • Alexander S. Graphodatsky
    • 1
    • 6
  • Vladimir A. Trifonov
    • 1
    • 6
  1. 1.Institute of Molecular and Cellular Biology SB RASNovosibirskRussia
  2. 2.Institute of Cytology and Genetics SB RASNovosibirskRussia
  3. 3.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Institute of Chemical Biology and Fundamental Medicine SB RASNovosibirskRussia
  5. 5.Cambridge Resource Centre for Comparative Genomics, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  6. 6.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations