Advertisement

Molecular Genetics and Genomics

, Volume 293, Issue 6, pp 1507–1522 | Cite as

Biocontrol strain Aspergillus flavus WRRL 1519 has differences in chromosomal organization and an increased number of transposon-like elements compared to other strains

  • Kayla K. Pennerman
  • Johanny Gonzalez
  • Lydia R. Chenoweth
  • Joan W. Bennett
  • Guohua Yin
  • Sui Sheng T. Hua
Original Article

Abstract

Aflatoxins are toxic secondary metabolites produced by members of the genus Aspergillus, most notably A. flavus. Non-aflatoxigenic strains of A. flavus are commonly used for biocontrol of the aflatoxigenic strains to reduce aflatoxins in corn, cotton, peanuts and tree nuts. However, genomic differences between aflatoxigenic strains and non-aflatoxigenic strains have not been reported in detail, though such differences may further elucidate the evolutionary histories of certain biocontrol strains and help guide development of other useful strains. We recently reported the genome and transcriptome sequencing of A. flavus WRRL 1519, a strain isolated from almond that does not produce aflatoxins or cyclopiazonic acid due to deletions in the biosynthetic gene clusters. Continued bioinformatics analyses focused on comparing strain WRRL 1519 to the aflatoxigenic strain NRRL 3357. The genome assembly of strain WRRL 1519 was improved by anchoring 84 of the 127 scaffolds to the putative nuclear chromosomes of strain NRRL 3357. The five largest areas of extrachromosomal mismatches observed between WRRL 1519 and NRRL 3357 were not similar to any of the mismatches that were observed with pairwise comparisons of NRRL 3357 to other non-aflatoxigenic strains NRRL 21882, NRRL 30797 or NRRL 18543. Comparisons of predicted secondary metabolite gene clusters uncovered two other biosynthetic gene clusters in which strain WRRL 1519 had large deletions compared to the homologous clusters in NRRL 3357. Additionally, there was a marked overrepresentation of repetitive sequences in WRRL 1519 compared to other inspected A. flavus strains. This is the first report of detection of a large number of putative retrotransposons in any A. flavus strain, initially suggesting that retrotransposons may contribute to the natural occurrence of genetic variation and biocontrol strains. However, the transposons may not be significantly associated with the chromosomal differences. Future experimentation and continued bioinformatics analyses will potentially illuminate causes of the differences and may reveal whether transposon activity in A. flavus can lead to random natural occurrences of non-aflatoxigenic strains.

Keywords

Aspergillus flavus Biocontrol Genome alignment Repetitive sequence Retrotransposon 

Notes

Funding

This work was funded by the USDA-ARS Non-Assistance Cooperative Agreement (no. 58-2030-6-053). Use of a company or product name by the U.S. Department of Agriculture does not imply approval or recommendation of the product to the exclusion of others that may also be suitable. We also greatly appreciate additional funding received from the Rutgers University Educational Opportunity Fund (J Gonzalez) and the Mycological Society of America John W. Rippon Award (KK Pennerman).

Compliance with ethical standards

Conflict of interest

KK Pennerman declares that she has no conflict of interest. J Gonzalez declares that she has no conflict of interest. LF Chenoweth declares that she has no conflict of interest. JW Bennett declares that she has no conflict of interest. G Yin declares that she has no conflict of interest. SST Hua declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2018_1474_MOESM1_ESM.eps (9.6 mb)
Supplementary Figure 1. Scaffold matching of NRRL 3357 to (A) itself, (B) NRRL 21882, (C) NRRL 30797 and (D) NRRL 18543. Chromosomes of NRRL 3357 are drawn in 16 different colors on the left side of each diagram. The outer track enumerates chromosome nucleotide length in kilobase pairs, and protein-coding gene density is shown by a histogram on the inner track. Scaffolds and chromosomes are connected to the NRRL 3357 chromosomes by lines representing high sequence similarity between two protein-coding genes. There is one extrachromosomal mismatch between NRRL 3357 chromosomes EQ963477.1 to EQ963476.12 due to a match to an apparent paralog. Many of the mismatches between NRRL 3357 and a non-aflatoxigenic strain are the same for different strains. (EPS 9861 KB)
438_2018_1474_MOESM2_ESM.eps (9 mb)
Supplementary material 2 (EPS 9253 KB)
438_2018_1474_MOESM3_ESM.eps (9.3 mb)
Supplementary material 3 (EPS 9490 KB)
438_2018_1474_MOESM4_ESM.eps (9.3 mb)
Supplementary material 4 (EPS 9511 KB)
438_2018_1474_MOESM5_ESM.pdf (194 kb)
Supplementary Figure 2. Scaffold organization of strain WRRL 1519. The scaffolds are ordered according to their relative placement to the centromeres. Blue and orange colors indicate the nucleotide sequence direction of the scaffold relative to the deposited NRRL 3357 genomic sequence. An asterisk denotes scaffolds on which one or more AFLAV-like sequences were found by either HMMER or RepeatMasker. Scaffolds 59, 72, 73 and 113 in which AFLAV-like sequences were detected are not represented because they were not confidently aligned to the NRRL 3357 chromosomes. The diagram is not to scale. (PDF 193 KB)
438_2018_1474_MOESM6_ESM.pdf (164 kb)
Supplementary Figure 3. Macrosynteny of A. flavus (A) NRRL 21882, (B) NRRL 30797, (C) NRRL 18543 and (D) WRRL 1519 scaffolds to NRRL 3357 chromosomes. Scaffolds of the strains are listed in the same relative orders as in Figure 2 and Supplementary Figure 1. (PDF 163 KB)
438_2018_1474_MOESM7_ESM.pdf (1.1 mb)
Supplementary Figure 4. Full alignment of WRRL 1519 candidate retrotransposons to retrotransposon AFLAV AY485786.2 from A. flavus NRRL 3357. Candidate retrotransposons are labeled according to Supplementary Table 4. Black and gray shading indicates strength of nucleotide consensus. The LTR regions, ORF1, ribosomal-1 frameshift site and ORF2 of AY485786.2 are highlighted in yellow, blue, orange and green, respectively. (PDF 1161 KB)
438_2018_1474_MOESM8_ESM.xlsx (24 kb)
Supplementary Table 1. Summary of non-aflatoxigenic A. flavus genome scaffolds matching to putative NRRL 3357 chromosomes. (XLSX 24 KB)
438_2018_1474_MOESM9_ESM.xlsx (1.3 mb)
Supplementary Table 2. Summary of results of sequence similarity searches of WRRL 1519 putative proteins against the annotated NRRL 3357 proteome. (XLSX 1323 KB)
438_2018_1474_MOESM10_ESM.docx (14 kb)
Supplementary Table 3. Counts of predicted secondary metabolite gene clusters by predicted products. (DOCX 14 KB)
438_2018_1474_MOESM11_ESM.docx (15 kb)
Supplementary Table 4. Candidate AFLAV-like retrotransposons in WRRL 1519. (DOCX 15 KB)

References

  1. Adhikari BN, Bandyopadhyay R, Cotty PJ (2016) Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America. AMB Express 6(1):62.  https://doi.org/10.1186/s13568-016-0228-6 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133.  https://doi.org/10.1146/annurev-phyto-072910-095221 CrossRefPubMedGoogle Scholar
  4. Amyotte SG, Tan X, Pennerman K, Jimenez-Gasco Mdel M, Klosterman SJ, Ma LJ, Dobinson KF, Veronese P (2012) Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genom 13:314.  https://doi.org/10.1186/1471-2164-13-314 CrossRefGoogle Scholar
  5. Anaya N, Roncero M (1996) Stress-induced rearrangement of Fusarium retrotransposon sequences. Mol Genet Genom 253(1–2):89–94.  https://doi.org/10.1007/s004380050300 CrossRefGoogle Scholar
  6. Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA (2008) Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci USA 105(33):11845–11850CrossRefGoogle Scholar
  7. Bennett JW (2010) An overview of the genus Aspergillus. In: Machida M, Gomi K (eds) Aspergillus: molecular biology and genomics.Caister Academic Press, Poole, pp 1–18.Google Scholar
  8. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15(6):621–627CrossRefGoogle Scholar
  9. Bourque G (2009) Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19(6):607–612.  https://doi.org/10.1016/j.gde.2009.10.013 CrossRefPubMedGoogle Scholar
  10. Braumann I, van den Berg M, Kempken F (2007) Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet Biol 44(12):1399–1414CrossRefGoogle Scholar
  11. Braumann I, van den Berg MA, Kempken F (2008) Strain-specific retrotransposon-mediated recombination commercially used Aspergillus niger strain. Mol Genet Genom 280:319.  https://doi.org/10.1007/s00438-008-0367-9 CrossRefGoogle Scholar
  12. Butler M, Goodwin T, Simpson M, Singh M, Poulter R (2001) Vertebrate LTR retrotransposons of the Tf1/sushi group. J Mol Evol 52(3):260–274CrossRefGoogle Scholar
  13. Castanera R, López-Varas L, Borgognone A, LaButti K, Lapidus A, Schmutz J, Grimwood J, Pérez G, Pisabarro AG, Grigoriev IV, Stajich JE, Ramírez L (2016) Transposable elements versus the fungal genome: impact on whole-genome architecture and transcriptional profiles. PLOS Genet 12(6):e1006108.  https://doi.org/10.1371/journal.pgen.1006108 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chadha S, Sharma M (2014) Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae. PLOS One 9(4):e94415.  https://doi.org/10.1371/journal.pone.0094415 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chang PK, Ehrlich KC (2010) What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol 138(3):189–199.  https://doi.org/10.1016/j.ijfoodmicro.2010.01.033 CrossRefPubMedGoogle Scholar
  16. Chang P-K, Horn BW, Dorner JW (2005) Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol 42(11):914–923CrossRefGoogle Scholar
  17. Chang P-K, Abbas HK, Weaver MA, Ehrlich KC, Scharfenstein LL, Cotty PJ (2012) Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. Int J Food Microbiol 154(3):192–196.  https://doi.org/10.1016/j.ijfoodmicro.2012.01.005 CrossRefPubMedGoogle Scholar
  18. Chang TC, Salvucci A, Crous PW, Stergiopoulos I (2016) Comparative genomics of the Sigatoka disease complex on banana suggests a link between parallel evolutionary changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and increased virulence on the banana host. PLOS Genet 12(8):e1005904.  https://doi.org/10.1371/journal.pgen.1005904 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clutterbuck AJ, Kapitonov VV, Jurka J (2008) Transposable elements and repeat-induced point mutation in Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus oryzae. In: Goldman GH, Osmani SA (eds) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC Press, Boca Raton, pp 343–355Google Scholar
  20. Cotty PJ (1990) Effects of atoxigenic strains of Aspergillus flavus on aflatoxin contamination of developing cotton seeds. Plant Dis 74(3):233–235.  https://doi.org/10.1094/PD-74-0233 CrossRefGoogle Scholar
  21. Cotty PJ (1994) Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathol 84:1270–1277.  https://doi.org/10.1094/Phyto-84-1270 CrossRefGoogle Scholar
  22. Cotty PJ, Mellon JE (2006) Ecology of aflatoxin producing fungi and biocontrol of aflatoxin contamination. Mycotoxin Res 22(2):110–117.  https://doi.org/10.1007/BF02956774 CrossRefPubMedGoogle Scholar
  23. Daboussi MJ (1997) Fungal transposable elements and genome evolution. Genetica 100:253–260CrossRefGoogle Scholar
  24. Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299CrossRefGoogle Scholar
  25. Davière JM, Langin T, Daboussi MJ (2001) Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genet Biol 34(3):177–192CrossRefGoogle Scholar
  26. de Lucca AJ (2007) Harmful fungi in both agriculture and medicine. Rev Iberoam Micol 24(1):3–13CrossRefGoogle Scholar
  27. Divakara ST, Aiyaz M, Moore GG, Venkataramana M, Hariprasad P, Nayaka SC, Niranjana SR (2015) Analysis of genetic and aflatoxin diversity among Aspergillus flavus isolates collected from sorghum seeds. J Basic Microbiol 55(11):1255–1264.  https://doi.org/10.1002/jobm.201400951 CrossRefPubMedGoogle Scholar
  28. Dong S, Raffaele S, Kamoun S (2015) The two-speed genomes of filamentous pathogens: Waltz with plants. Curr Opin Genet Dev 35:57–65.  https://doi.org/10.1016/j.gde.2015.09.001 CrossRefPubMedGoogle Scholar
  29. Dusa A (2016) venn: draw venn diagrams. R package version 1.2. https://www.cran.r-project.org/package=venn. Accessed 25 May 2018
  30. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971CrossRefGoogle Scholar
  32. Emtiazi G, Naghavi N, Bordbar A (2001) Biodegradation of lignocellulosic waste by Aspergillus terreus. Biodegradation 12(4):259–263CrossRefGoogle Scholar
  33. Feschotte C (2008) The contribution of transposable elements to the evolution of regulatory networks. Nat Rev Genet 9(5):397–405.  https://doi.org/10.1038/nrg2337 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fudal I, Ross S, Brun H, Besnard AL, Ermel M, Kuhn ML, Balesdent MH, Rouxel T (2009) Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol Plant Microbe Interact 22(8):932–941.  https://doi.org/10.1094/MPMI-22-8-0932 CrossRefPubMedGoogle Scholar
  35. Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA 95(1):388–393CrossRefGoogle Scholar
  36. Goldman GH, Osmani SA (2008) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC Press, Boca RatonGoogle Scholar
  37. Hansen LJ, Chalker DL, Sandmeyer SB (1988) Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol Cell Biol 8(12):5245–5256CrossRefGoogle Scholar
  38. Hua SS, Tarun AS, Pandey SN, Chang L, Chang PK (2007) Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus. Mycopathologia 163(2):97–104CrossRefGoogle Scholar
  39. Hua SS, McAlpin CE, Chang PK, Sarreal SB (2012) Characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates from pistachio. Mycotoxin Res 28(1):67–75.  https://doi.org/10.1007/s12550-011-0117-4 CrossRefPubMedGoogle Scholar
  40. Hua-Van A, Davière JM, Kaper F, Langin T, Daboussi MJ (2000) Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37(5):339–347CrossRefGoogle Scholar
  41. Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 110(1–4):426–440CrossRefGoogle Scholar
  42. Ikeda K, Nakayashiki H, Takagi M, Tosa Y, Mayama S (2001) Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe girsea. Mol Genet Genom 266(2):318–325.  https://doi.org/10.1007/s004380100560 CrossRefGoogle Scholar
  43. Irelan JT, Hagemann AT, Selker EU (1994) High frequency repeat-induced point mutation (RIP) is not associated with efficient recombination in Neurospora. Genet 138(4):1093–1103Google Scholar
  44. Jamali M, Ebrahimi MA, Karimipour M, Shams-Ghahfarokhi M, Dinparast-Djadid N, Kalantari S, Pilehvar-Soltanahmadi Y, Amani A, Razzaghi-Abyaneh M (2012) An insight into the distribution, genetic diversity, and mycotoxin production of Aspergillus section Flavi in soils of pistachio orchards. Folia Microbiol (Praha) 57(1):27–36.  https://doi.org/10.1007/s12223-011-0090-5 CrossRefGoogle Scholar
  45. Jin FJ, Hara S, Sato A, Koyama Y (2014) Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae. J Gen Appl Microbiol 60(1):1–6CrossRefGoogle Scholar
  46. Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform 11(1):431CrossRefGoogle Scholar
  47. Kang S, Lebrun MH, Farrall L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact 14(5):671–674CrossRefGoogle Scholar
  48. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46(D1):D1284.  https://doi.org/10.1093/nar/gkx1188 CrossRefPubMedGoogle Scholar
  49. Klein SJ, O’Neill RJ (2018) Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 26(1–2):5–23.  https://doi.org/10.1007/s10577-017-9569-5 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645.  https://doi.org/10.1101/gr.092759.109 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Larrondo LF, Canessa P, Vicuña R, Stewart P, Vanden Wymelenberg A, Cullen D (2007) Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes. Mol Genet Genom 277(1):43–55CrossRefGoogle Scholar
  52. Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A (2017) Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLOS Biol 15(11):e2003583.  https://doi.org/10.1371/journal.pbio.2003583 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Linz JE, Wee J, Roze LV (2014) Aspergillus parasiticus SU-1 genome sequence, predicted chromosome structure, and comparative gene expression under aflatoxin-inducing conditions: evidence that differential expression contributes to species phenotype. Eukaryot Cell 13(8):1113–1123.  https://doi.org/10.1128/EC.00108-14 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438(7071):1157–1161CrossRefGoogle Scholar
  55. Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: Learning from the history of Koji mold and exploration of its future. DNA Res 15(4):173–183.  https://doi.org/10.1093/dnares/dsn020 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 14(1):e1005944.  https://doi.org/10.1371/journal.pcbi CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mes JJ, Haring MA, Cornelissen BJC (2000) Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum. Mol Genet Genom 263(2):271–280.  https://doi.org/10.1007/PL00008681 CrossRefGoogle Scholar
  58. Miller K, Lynch C, Martin J, Herniou E, Tristem M (1999) Identification of multiple Gypsy LTR-retrotransposon lineages in vertebrate genomes. J Mol Evol 49:358–366CrossRefGoogle Scholar
  59. Moore GG (2014) Sex and recombination in aflatoxigenic Aspergilli: global implications. Front Microbiol 5:32.  https://doi.org/10.3389/fmicb.2014.00032 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moore GG, Singh R, Horn BW, Carbone I (2009) Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus. Mol Ecol 18(23):4870–4887.  https://doi.org/10.1111/j.1365-294X.2009.04414.x CrossRefPubMedGoogle Scholar
  61. Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S (2016) Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol 2(1):36–42.  https://doi.org/10.18869/acadpub.cmm.2.1.36 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Neuveglise C, Sarfati J, Latge JP, Paris S (1996) Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res 24(8):1428–1434CrossRefGoogle Scholar
  63. Nguyen NTT, Contreras-Moreira B, Castro-Mondragon JA, Santana-Garcia W, Ossio R, Robles-Espinoza CD, Bahin M, Collombet S, Vincens P, Thieffry D, van Helden J, Medina-Rivera A, Thomas-Chollier M (2018) RSAT 2018: Regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res 46(w1):w209–w214.  https://doi.org/10.1093/nar/gky317 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nierman WC, May G, Kim HS, Anderson MJ, Chen D, Denning DW (2005) What the Aspergillus genomes have told us. Med Mycol 43(Suppl 1):S3–S5CrossRefGoogle Scholar
  65. Nierman WC, Yu J, Fedorova-Abrams ND, Losada L, Cleveland TE, Bhatnagar D, Bennett JW, Dean R, Payne GA (2015) Genome sequence of Aspergillus flavus NRRL 3357, a strain that causes aflatoxin contamination of food and feed. Genome Announc 3(2):pii:e00168–15.  https://doi.org/10.1128/genomeA.00168-15 CrossRefGoogle Scholar
  66. Nishimura M, Hayashi N, Jwa NS, Lau GW, Hamer JE, Hasebe A (2000) Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol Plant Microbe Interact 13(8):892–894CrossRefGoogle Scholar
  67. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745.  https://doi.org/10.1093/nar/gkv1189 CrossRefPubMedGoogle Scholar
  68. Ogasawara H, Obata H, Hata Y, Takahashi S, Gomi K (2009) Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet Biol 46(6–7):441–449.  https://doi.org/10.1016/j.fgb.2009.02.007 CrossRefPubMedGoogle Scholar
  69. Okubara PA, Tibbot BK, Tarun AS, McAlpin CE, Hua SS (2003) Partial retrotransposon-like DNA sequence in the genomic clone of Aspergillus flavus, pAF28. Mycol Res 107(Pt 7):841–846CrossRefGoogle Scholar
  70. Olarte RA, Horn BW, Dorner JW, Monacell JT, Singh R, Stone EA, Carbone I (2012) Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Mol Ecol 21(6):1453–1476.  https://doi.org/10.1111/j.1365-294X.2011.05398.x CrossRefPubMedGoogle Scholar
  71. Oliver R (1992) Transposons in filamentous fungi. In: Stahl U, Tudzynski P (eds) Molecular Biology of Filamentous Fungi. In: Proceedings of the EMBO-Workshop, Berlin, August 24–29, 1991, Volume 4 of EMBO Workshop. Weinheim, Germany: VCH Verlagsgesellschaft, pp 3–11Google Scholar
  72. Payne GA, Pritchard BL, Brown D, Yu J, Nierman WC, Dean RA, Bhatnagar D, Cleveland TE, Machida M (2006) Whole genome comparison of A. flavus and A. oryzae. Med Mycol 44(S1):S9–S11.  https://doi.org/10.1080/13693780600835716 CrossRefPubMedGoogle Scholar
  73. Payne GA, Yu J, Nierman WC, Machida M, Bhatnagar D, Cleveland TE, Dean RA (2008) A first glance into the genome sequence of Aspergillus flavus. In: Goldman GH, Osmani SA (eds) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC Press, Boca Raton, pp 15–23Google Scholar
  74. Peterson-Burch BD, Nettleton D, Voytas DF (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5(10):R78CrossRefGoogle Scholar
  75. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92(9):3804–3808CrossRefGoogle Scholar
  76. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 25 May 2018
  77. Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: Why bigger can be better. Nat Rev Microbiol 10(6):417–430.  https://doi.org/10.1038/nrmicro2790 CrossRefPubMedGoogle Scholar
  78. Raulo R, Kokolski M, Archer DB (2016) The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger. AMB Express 6:5.  https://doi.org/10.1186/s13568-016-0177-0 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237.  https://doi.org/10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  80. Rep M, van der Does HC, Cornelissen BJ (2005) Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genet Biol 42(6):546–553CrossRefGoogle Scholar
  81. Richard JL, Payne GA (2003) Mycotoxins: risks in plant, animal and human systems. Council for agricultural science and technology (CAST), Ames, IA. https://www.international-food-safety.com/pdf/Mycotoxins%20-%20Risks%20in%20Plant,%20Animals%20and%20Human%20Systems.pdf. Accessed 12 Apr 2018
  82. Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: Genetic map positions and repetitive DNA structure. Genome Res 7(11):1045–1053CrossRefGoogle Scholar
  83. Seidl MF, Thomma BPHJ (2017) Transposable elements direct the coevolution between plants and microbes. Trend Genet 33(11):842–851.  https://doi.org/10.1016/j.tig.2017.07.003 CrossRefGoogle Scholar
  84. Smit AFA, Hubley R, Green P (2015) RepeatMasker Open-4.0. (2013–2015). https://www.repeatmasker.org. Accessed 20 May 2018
  85. Solorzano CD, Abbas HK, Zablotowicz RM, Chang PK, Jones WA (2014) Genetic variability of Aspergillus flavus isolates from a Mississippi corn field. Sci World J 2014:356059.  https://doi.org/10.1155/2014/356059 CrossRefGoogle Scholar
  86. Stanke M, Schöffmann O, Morgenstern B, Waack S (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform 7:62CrossRefGoogle Scholar
  87. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010.  https://doi.org/10.1093/bioinformatics/btr039 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18(12):1979–1990.  https://doi.org/10.1101/gr.081612.108 CrossRefPubMedPubMedCentralGoogle Scholar
  89. The Inkscape Team (2015) Inkscape 0.91. https://inkscape.org/en/release/0.91/. Accessed 25 May 2018
  90. Thon MR, Pan H, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA (2006) The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol 7(2):R16CrossRefGoogle Scholar
  91. Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26(7):705–713.  https://doi.org/10.1101/gad.183871.111 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Weaver MA, Scheffler BE, Duke M, Ballard L, Abbas HK, Grodowitz MJ (2017) Genome sequence of three strains of Aspergillus flavus for the biological control of aflatoxin. Genome Announc 5(44):pii:e01204–17.  https://doi.org/10.1128/genomeA.01204-17 CrossRefGoogle Scholar
  93. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acid Res 43(W1):W237–W243.  https://doi.org/10.1093/nar/gkv437 CrossRefPubMedGoogle Scholar
  94. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982CrossRefGoogle Scholar
  95. Xu XH, Su ZZ, Wang C, Kubicek CP, Feng XX, Mao LJ, Wang JY, Chen C, Lin FC, Zhang CL (2014) The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Sci Rep 4:5783.  https://doi.org/10.1038/srep05783 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yin G, Hua SST, Pennerman KK, Yu J, Bu L, Sayre RT, Bennett JW (2018) Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519. Mycologia 110(3):482–493.  https://doi.org/10.1080/00275514.2018.1468201 CrossRefPubMedGoogle Scholar
  97. Zhou E, Jia Y, Singh P, Correll JC, Lee FN (2007) Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol 44(10):1024–1034CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of Plant Biology, RutgersThe State University of New JerseyNew BrunswickUSA
  2. 2.New Mexico Consortium and Pebble Labs Inc.Los AlamosUSA
  3. 3.U.S. Department of AgricultureARS Western Regional Research CenterAlbanyUSA

Personalised recommendations