Advertisement

Molecular Genetics and Genomics

, Volume 293, Issue 5, pp 1255–1263 | Cite as

Whole mitochondrial genome diversity in two Hungarian populations

  • Boris Malyarchuk
  • Miroslava Derenko
  • Galina Denisova
  • Andrey Litvinov
  • Urszula Rogalla
  • Katarzyna Skonieczna
  • Tomasz Grzybowski
  • Klára Pentelényi
  • Zsuzsanna Guba
  • Tamás Zeke
  • Mária Judit Molnár
Original Article
  • 118 Downloads

Abstract

Complete mitochondrial genomics is an effective tool for studying the demographic history of human populations, but there is still a deficit of mitogenomic data in European populations. In this paper, we present results of study of variability of 80 complete mitochondrial genomes in two Hungarian populations from eastern part of Hungary (Szeged and Debrecen areas). The genetic diversity of Hungarian mitogenomes is remarkably high, reaching 99.9% in a combined sample. According to the analysis of molecular variance (AMOVA), European populations showed a low, but statistically significant level of between-population differentiation (Fst = 0.61%, p = 0), and two Hungarian populations demonstrate lack of between-population differences. Phylogeographic analysis allowed us to identify 71 different mtDNA sub-clades in Hungarians, sixteen of which are novel. Analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Eurasia, though the contribution from European populations is the most pronounced. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East and West Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c), while the influence of Siberian populations is not so noticeable (sub-clades A12a, C4a1a, and probably U4b1a4).

Keywords

Complete mitochondrial genomes Hungarians Genetic diversity Phylogeny Molecular phylogeography 

Notes

Funding

This study was supported by the Russian Foundation for Basic Research (grant number 16-34-00014) and the Wenner-Gren Foundation (Grant number ICRG-117).

Compliance with ethical standards

Conflict of interest

There is conflict of interest as given here: Prof. Maria Judit Molnár (the Institute of Genomic Medicine and Rare Disorders at Semmelweis University) is also in collaboration with laboratory in the Hungarian Archeological Institute, which does not support and appreciate the work of Molecular Anthropology Research Group presented here by Drs. Zsuzsanna Guba and Tamas Zeke.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

438_2018_1458_MOESM1_ESM.xlsx (119 kb)
Supplementary material 1 (XLSX 118 KB)
438_2018_1458_MOESM2_ESM.xlsx (16 kb)
Supplementary material 2 (XLSX 16 KB)
438_2018_1458_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 15 KB)

References

  1. Allentoft ME, Sikora M, Sjögren KG, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlström T, Vinner L, Malaspinas AS, Margaryan A, Higham T, Chivall D, Lynnerup N, Harvig L, Baron J, Della Casa P, Dąbrowski P, Duffy PR, Ebel AV, Epimakhov A, Frei K, Furmanek M, Gralak T, Gromov A, Gronkiewicz S, Grupe G, Hajdu T, Jarysz R, Khartanovich V, Khokhlov A, Kiss V, Kolář J, Kriiska A, Lasak I, Longhi C, McGlynn G, Merkevicius A, Merkyte I, Metspalu M, Mkrtchyan R, Moiseyev V, Paja L, Pálfi G, Pokutta D, Pospieszny Ł, Price TD, Saag L, Sablin M, Shishlina N, Smrčka V, Soenov VI, Szeverényi V, Tóth G, Trifanova SV, Varul L, Vicze M, Yepiskoposyan L, Zhitenev V, Orlando L, Sicheritz-Pontén T, Brunak S, Nielsen R, Kristiansen K, Willerslev E (2015) Population genomics of Bronze Age Eurasia. Nature 522(7555):167–172.  https://doi.org/10.1038/nature14507 CrossRefPubMedGoogle Scholar
  2. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2):147.  https://doi.org/10.1038/13779 CrossRefPubMedGoogle Scholar
  3. Brandstätter A, Egyed B, Zimmermann B, Duftner N, Padar Z, Parson W (2007) Migration rates and genetic structure of two Hungarian ethnic groups in Transylvania, Romania. Ann Hum Genet 71:791–803.  https://doi.org/10.1111/j.1469-1809.2007.00371.x CrossRefPubMedGoogle Scholar
  4. Csákyová V, Szécsényi-Nagy A, Csősz A, Nagy M, Fusek G, Langó P, Bauer M, Mende BG, Makovický P, Bauerová M (2016) Maternal genetic composition of a medieval population from a Hungarian-Slavic contact zone in Central Europe. PLoS ONE 11(3):e0151206.  https://doi.org/10.1371/journal.pone.0151206 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Csősz A, Szécsényi-Nagy A, Csákyová V, Langó P, Bódis V, Köhler K, Tömöry G, Nagy M, Mende BG (2016) Maternal genetic ancestry and legacy of 10th century AD Hungarians. Sci Rep 6:33446.  https://doi.org/10.1038/srep33446 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Egyed B, Brandstätter A, Irwin JA, Pádár Z, Parsons TJ, Parson W (2007) Mitochondrial control region sequence variations in the Hungarian population: analysis of population samples from Hungary and from Transylvania (Romania). Forensic Sci Int Genet 1(2):158–162.  https://doi.org/10.1016/j.fsigen.2007.03.001 CrossRefPubMedGoogle Scholar
  7. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  8. Fodor I (1982) In search of a new homeland. The prehistory of the Hungarian people and the conquest. Corvina Press, BudapestGoogle Scholar
  9. Fraumene C, Belle EM, Castri L, Sanna S, Mancosu G, Cosso M, Marras F, Barbujani G, Pirastu M, Angius A (2006) High resolution analysis and phylogenetic network construction using complete mtDNA sequences in Sardinian genetic isolates. Mol Biol Evol 23(11):2101–2111.  https://doi.org/10.1093/molbev/msl084 CrossRefPubMedGoogle Scholar
  10. Gimbutas M (1971) The Slavs. Praeger Publishing, New YorkGoogle Scholar
  11. Guba Z, Hadadi É, Major Á, Furka T, Juhász E, Koós J, Nagy K, Zeke T (2011) HVS-I polymorphism screening of ancient human mitochondrial DNA provides evidence for N9a discontinuity and East Asian haplogroups in the Neolithic Hungary. J Hum Genet 56(11):784–796.  https://doi.org/10.1038/jhg.2011.103 CrossRefPubMedGoogle Scholar
  12. Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tänzer M, Villems R, Renfrew C, Gronenborn D, Alt KW, Burger J (2005) Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Scinece 310(5750):1016–1018.  https://doi.org/10.1126/science.1118725 CrossRefGoogle Scholar
  13. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt G, Nordenfelt S, Harney E, Stewardson K, Fu Q, Mittnik A, Bánffy E, Economou C, Francken M, Friederich S, Pena RG, Hallgren F, Khartanovich V, Khokhlov A, Kunst M, Kuznetsov P, Meller H, Mochalov O, Moiseyev V, Nicklisch N, Pichler SL, Risch R, Rojo Guerra MA, Roth C, Szécsényi-Nagy A, Wahl J, Meyer M, Krause J, Brown D, Anthony D, Cooper A, Alt KW, Reich D (2015) Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522(7555):207–211.  https://doi.org/10.1038/nature14317 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Heinz T, Pala M, Gómez-Carballa A, Richards MB, Salas A (2017) Updating the African human mitochondrial DNA tree: relevance to forensic and population genetics. Forensic Sci Int Genet 27:156–159.  https://doi.org/10.1016/j.fsigen.2016.12.016 CrossRefPubMedGoogle Scholar
  15. Juras A, Chyleński M, Krenz-Niedbała M, Malmström H, Ehler E, Pospieszny Ł, Łukasik S, Bednarczyk J, Piontek J, Jakobsson M, Dabert M (2017) Investigating kinship of Neolithic post-LBK human remains from Krusza Zamkowa, Poland using ancient DNA. Forensic Sci Int Genet 26:30–39.  https://doi.org/10.1016/j.fsigen.2016.10.008 CrossRefPubMedGoogle Scholar
  16. Kivisild T (2015) Maternal ancestry and population history from whole mitochondrial genomes. Investig Genet 6:3.  https://doi.org/10.1186/s13323-015-0022-2 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lahermo P, Laitinen V, Sistonen P, Béres J, Karcagi V, Savontaus ML (2000) MtDNA polymorphism in the Hungarians: comparison to three other Finno-Ugric-speaking populations. Hereditas 132(1):35–42. http://www.ncbi.nlm.nih.gov/pubmed/10857257
  18. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Malyarchuk B, Grzybowski T, Derenko M, Perkova M, Vanecek T, Lazur J, Gomolcak P, Tsybovsky I (2008) Mitochondrial DNA phylogeny in Eastern and Western Slavs. Mol Biol Evol 25(8):1651–1658.  https://doi.org/10.1093/molbev/msn114 CrossRefPubMedGoogle Scholar
  20. Malyarchuk B, Derenko M, Denisova G, Kravtsova O (2010) Mitogenomic diversity in Tatars from the Volga-Ural region of Russia. Mol Biol Evol 27(10):2220–2226.  https://doi.org/10.1093/molbev/msq065 CrossRefPubMedGoogle Scholar
  21. Malyarchuk B, Litvinov A, Derenko M, Skonieczna K, Grzybowski T, Grosheva A, Shneider YU, Rychkov S, Zhukova O (2017) Mitogenomic diversity in Russians and Poles. Forensic Sci Int Genet 30:51–56.  https://doi.org/10.1016/j.fsigen.2017.06.003 CrossRefPubMedGoogle Scholar
  22. Mielnik-Sikorska M, Daca P, Malyarchuk B, Derenko M, Skonieczna K, Perkova M, Dobosz T, Grzybowski T (2013) The history of Slavs inferred from complete mitochondrial genome sequences. PLoS One 8(1):e54360.  https://doi.org/10.1371/journal.pone.0054360 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Neparáczki E, Juhász Z, Pamjav H, Fehér T, Csányi B, Zink A, Maixner F, Pálfi G, Molnár E, Pap I, Kustár Á, Révész L, Raskó I, Török T (2017a) Genetic structure of the early Hungarian conquerors inferred from mtDNA haplotypes and Y-chromosome haplogroups in a small cemetery. Mol Genet Genomics 292(1):201–214.  https://doi.org/10.1007/s00438-016-1267-z CrossRefPubMedGoogle Scholar
  24. Neparáczki E, Kocsy K, Tóth GE, Maróti Z, Kalmár T, Bihari P, Nagy I, Pálfi G, Molnár E, Raskó I, Török T (2017b) Revising mtDNA haplotypes of the ancient Hungarian conquerors with next generation sequencing. PLoS One 12(4):e0174886.  https://doi.org/10.1371/journal.pone.0174886 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Olivieri A, Sidore C, Achilli A, Angius A, Posth C, Furtwängler A, Brandini S, Capodiferro MR, Gandini F, Zoledziewska M, Pitzalis M, Maschio A, Busonero F, Lai L, Skeates R, Gradoli MG, Beckett J, Marongiu M, Mazzarello V, Marongiu P, Rubino S, Rito T, Macaulay V, Semino O, Pala M, Abecasis GR, Schlessinger D, Conde-Sousa E, Soares P, Richards MB, Cucca F, Torroni A (2017) Mitogenome diversity in Sardinians: a genetic window onto an Island’s past. Mol Biol Evol 34(5):1230–1239.  https://doi.org/10.1093/molbev/msx082 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Översti S, Onkamo P, Stoljarova M, Budowle B, Sajantila A, Palo JU (2017) Identification and analysis of mtDNA genomes attributed to Finns reveal long-stagnant demographic trends obscured in the total diversity. Sci Rep 7(1):6193.  https://doi.org/10.1038/s41598-017-05673-7 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pentelenyi K, Remenyi V, Gal A, Milley GM, Csosz A, Mende BG, Molnar MJ (2016) Asian-specific mitochondrial genome polymorphism (9-bp deletion) in Hungarian patients with mitochondrial disease. Mitochondrial DNA A DNA Mapp Seq Anal 27(3):1697–1700.  https://doi.org/10.3109/19401736.2014.961128 PubMedCrossRefGoogle Scholar
  28. Perego UA, Achilli A, Angerhofer N, Accetturo M, Pala M, Olivieri A, Hooshiar Kashani B, Ritchie KH, Scozzari R, Kong QP, Myres NM, Salas A, Semino O, Bandelt HJ, Woodward SR, Torroni A (2009) Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups. Curr Biol 19(1):1–8.  https://doi.org/10.1016/j.cub.2008.11.058 CrossRefPubMedGoogle Scholar
  29. Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, Sellitto D, Cruciani F, Kivisild T, Villems R, Thomas M, Rychkov S, Rychkov O, Rychkov Y, Gölge M, Dimitrov D, Hill E, Bradley D, Romano V, Calì F, Vona G, Demaine A, Papiha S, Triantaphyllidis C, Stefanescu G, Hatina J, Belledi M, Di Rienzo A, Novelletto A, Oppenheim A, Nørby S, Al-Zaheri N, Santachiara-Benerecetti S, Scozari R, Torroni A, Bandelt HJ (2000) Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 67(5):1251–1276CrossRefPubMedPubMedCentralGoogle Scholar
  30. Saillard J, Forster P, Lynnerup N, Bandelt HJ, Norby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67(3):718–726.  https://doi.org/10.1086/303038 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Semino O, Passarino G, Quintana-Murci L, Liu A, Béres J, Czeizel A, Santachiara-Benerecetti AS (2000) MtDNA and Y chromosome polymorphisms in Hungary: inferences from the Palaeolithic, Neolithic and Uralic influences on the modern Hungarian gene pool. Eur J Hum Genet 8(5):339–346. http://www.ncbi.nlm.nih.gov/pubmed/10854093
  32. Soares P, Ermini L, Thomson N, Mormina M, Rito T, Rohl A, Salas A, Oppenheimer S, Macaulay V, Richards MB (2009) Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet 84(6):740–759.  https://doi.org/10.1016/j.ajhg.2009.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Stoljarova M, King JL, Takahashi M, Aaspõllu A, Budowle B (2016) Whole mitochondrial genome genetic diversity in an Estonian population sample. Int J Legal Med 130(1):67–71.  https://doi.org/10.1007/s00414-015-1249-4 CrossRefPubMedGoogle Scholar
  34. Tömöry G, Csányi B, Bogácsi-Szabó E, Kalmár T, Czibula Á, Csősz A, Priskin K, Mende B, Langó P, Downes CS, Raskó I (2007) Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. Am J Phys Anthropol 134(3):354–368.  https://doi.org/10.1002/ajpa.20677 CrossRefPubMedGoogle Scholar
  35. Torroni A, Rengo C, Guida V, Cruciani F, Sellitto D, Coppa A, Calderon FL, Simionati B, Valle G, Richards M, Macaulay V, Scozzari R (2001) Do the four clades of the mtDNA haplogroup L2 evolve at different rates? Am J Hum Genet 69(6):1348–1356.  https://doi.org/10.1086/324511 CrossRefPubMedPubMedCentralGoogle Scholar
  36. van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386-394.  https://doi.org/10.1002/humu.20921 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Boris Malyarchuk
    • 1
  • Miroslava Derenko
    • 1
  • Galina Denisova
    • 1
  • Andrey Litvinov
    • 1
  • Urszula Rogalla
    • 2
  • Katarzyna Skonieczna
    • 2
  • Tomasz Grzybowski
    • 2
  • Klára Pentelényi
    • 3
  • Zsuzsanna Guba
    • 4
  • Tamás Zeke
    • 4
  • Mária Judit Molnár
    • 3
  1. 1.Genetics Laboratory, Institute of Biological Problems of the NorthRussian Academy of SciencesMagadanRussia
  2. 2.Department of Forensic Medicine, Ludwik Rydygier Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
  3. 3.Institute of Genomic Medicine and Rare DisordersSemmelweis UniversityBudapestHungary
  4. 4.Hungarian Molecular Anthropological Research GroupDebrecenHungary

Personalised recommendations