Molecular Genetics and Genomics

, Volume 293, Issue 3, pp 725–736 | Cite as

Genetic analysis of very obese children with autism spectrum disorder

  • Herman D. Cortes
  • Rachel WevrickEmail author
Original Article


Autism spectrum disorder (ASD) is defined by the triad of deficits in social interactions, deficits in communication, and repetitive behaviors. Common co-morbidities in syndromic forms of ASD include intellectual disability, seizures, and obesity. We asked whether very obese children with ASD had different behavioral, physical and genetic characteristics compared to children with ASD who were not obese. We found that very obese children with ASD had significantly poorer scores on standardized behavioral tests. Very obese boys with ASD had lower full scale IQ and increased impairments with respect to stereotypies, communication and social skills. Very obese girls with ASD had increased impairments with respect to irritability and oppositional defiant behavior. We identified genetic lesions in a subset of the children with ASD and obesity and attempted to identify enriched biological pathways. Our study demonstrates the value of identifying co-morbidities in children with ASD as we move forward towards understanding the biological processes that contribute to this complex disorder and prepare to design customized treatments that target the diverse genetic lesions present in individuals with ASD.


SSC Autism spectrum disorder Obesity Wnt Gene Ontology 



Aberrant Behavior Checklist


Autism Diagnostic Interview


Autism spectrum disorder


Body mass index,

CBCL 6–18

Child Behavior Checklist


De novo copy number variants


De novo likely gene disrupting


De novo non-synonymous coding mutations


Exome Aggregation Consortium


Full scale IQ


Gene Ontology


Intellectual disability


Loss of function


Planar cell polarity


Prader–Willi syndrome


Simons Simplex Collection


Vineland Adaptive Behavior Rating Scales



We are grateful to all of the families at the participating Simons Simplex Collection (SSC) sites, as well as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. Goin-Kochel, E. Hanson, D. Grice, (A) Klin, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, (B) Peterson, J. Piggot, (C) Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, E. Wijsman). We appreciate obtaining access to phenotypic data on SFARI Base. Approved researchers can obtain the SSC population dataset described in this study by applying at We are grateful to the Prader–Willi Association of Alberta for their donation in support of our research on autism spectrum disorders.

Author contributions

HDC and RW analyzed and interpreted the mutation data and wrote the manuscript. Both authors read and approved the final manuscript.


This work was supported by a Grant from the Simons Foundation for Autism Research (SFARIPA304216, to RW).

Compliance with ethical standards

Conflict of interest

H. D. Cortes declares that he has no conflict of interest. R. Wevrick declares that she has no conflict of interest.

Ethics approval and consent to participate

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.” Use of SSC data from human subjects was approved by the Health Research Ethics Board-Biomedical Panel of the University of Alberta, Edmonton, Alberta Canada. This article does not contain any studies with animals performed by any of the authors.

Availability of data and material

The data that support the findings of this study are available from the Simons Foundation but restrictions apply to the availability of these data, which were used under license for the current study. Data are however available from the authors upon reasonable request and with permission of the Simons Foundation.

Supplementary material

438_2018_1418_MOESM1_ESM.xlsx (64 kb)
Supplementary material 1 (XLSX 63 KB)
438_2018_1418_MOESM2_ESM.xlsx (23 kb)
Supplementary material 2 (XLSX 22 KB)
438_2018_1418_MOESM3_ESM.pdf (156 kb)
Supplementary material 3 (PDF 155 KB)


  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped Gene Ontology and pathway annotation networks. Bioinformatics 25:1091–1093CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blanchet P, Bebin M, Bruet S, Cooper GM, Thompson ML, Duban-Bedu B, Gerard B, Piton A, Suckno S, Deshpande C, Clowes V, Vogt J, Turnpenny P, Williamson MP, Alembik Y, Clinical Sequencing Exploratory Research Study C, Deciphering Developmental Disorders C, Glasgow E, McNeill A (2017) MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus. PLoS Genet 13:e1006957CrossRefPubMedPubMedCentralGoogle Scholar
  4. Broder-Fingert S, Brazauskas K, Lindgren K, Iannuzzi D, Van Cleave J (2014) Prevalence of overweight and obesity in a large clinical sample of children with autism. Acad Pediatr 14:408–414CrossRefPubMedGoogle Scholar
  5. Bunn KJ, Daniel P, Rosken HS, O’Neill AC, Cameron-Christie SR, Morgan T, Brunner HG, Lai A, Kunst HP, Markie DM, Robertson SP (2015) Mutations in DVL1 cause an osteosclerotic form of Robinow syndrome. Am J Hum Genet 96:623–630CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caracci MO, Avila ME, De Ferrari GV (2016) Synaptic Wnt/GSK3beta signaling hub in autism. Neural Plast 2016:9603751CrossRefPubMedPubMedCentralGoogle Scholar
  7. Casanova EL, Sharp JL, Chakraborty H, Sumi NS, Casanova MF (2016) Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Mol Autism 7:18CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill RS, Stevens CR, Schubert CR, Collaboration AAS, Greenberg ME, Gabriel SB, Walsh CA (2012) Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 8:e1002635CrossRefPubMedPubMedCentralGoogle Scholar
  9. Channell MM, Phillips BA, Loveall SJ, Conners FA, Bussanich PM, Klinger LG (2015) Patterns of autism spectrum symptomatology in individuals with Down syndrome without comorbid autism spectrum disorder. J Neurodev Disord 7:5CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen G, Zhang Z, Adebamowo SN, Liu G, Adeyemo A, Zhou Y, Doumatey AP, Wang C, Zhou J, Yan W, Shriner D, Tekola-Ayele F, Bentley AR, Jiang C, Rotimi CN (2017) Common and rare exonic MUC5B variants associated with type 2 diabetes in Han Chinese. PLoS One 12:e0173784CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choquet H, Meyre D (2011) Genetics of obesity: what have we learned? Curr Genom 12:169–179CrossRefGoogle Scholar
  12. Cornelis MC, Rimm EB, Curhan GC, Kraft P, Hunter DJ, Hu FB, van Dam RM (2014) Obesity susceptibility loci and uncontrolled eating, emotional eating and cognitive restraint behaviors in men and women. Obesity (Silver Spring) 22:E135–E141CrossRefGoogle Scholar
  13. D’Angelo CS, Kohl I, Varela MC, de Castro CI, Kim CA, Bertola DR, Lourenco CM, Perez AB, Koiffmann CP (2013) Obesity with associated developmental delay and/or learning disability in patients exhibiting additional features: report of novel pathogenic copy number variants. Am J Med Genet A 161A:479–486CrossRefPubMedGoogle Scholar
  14. De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25:7545–7553CrossRefPubMedGoogle Scholar
  15. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Shih-Chen F, Aleksic B, Biscaldi M, Bolton PF, Brownfeld JM, Cai J, Campbell NG, Carracedo A, Chahrour MH, Chiocchetti AG, Coon H, Crawford EL, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ, Hill RS, Ionita-Laza J, Jimenz Gonzalez P, Kilpinen H, Klauck SM, Kolevzon A, Lee I, Lei I, Lei J, Lehtimaki T, Lin CF, Ma’ayan A, Marshall CR, McInnes AL, Neale B, Owen MJ, Ozaki N, Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnstrom K, Reichenberg A, Sabo A, Sachse M, Sanders SJ, Schafer C, Schulte-Ruther M, Skuse D, Stevens C, Szatmari P, Tammimies K, Valladares O, Voran A, Li-San W, Weiss LA, Willsey AJ, Yu TW, Yuen RK, Study DDD, Homozygosity Mapping Collaborative for A, Consortium UK, Cook EH, Freitag CM, Gill M, Hultman CM, Lehner T, Palotie A, Schellenberg GD, Sklar P, State MW, Sutcliffe JS, Walsh CA, Scherer SW, Zwick ME, Barett JC, Cutler DJ, Roeder K, Devlin B, Daly MJ, Buxbaum JD (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dimitropoulos A, Ho A, Feldman B (2013) Social responsiveness and competence in Prader–Willi syndrome: direct comparison to autism spectrum disorder. J Autism Dev Disord 43:103–113CrossRefPubMedGoogle Scholar
  17. DiStefano C, Gulsrud A, Huberty S, Kasari C, Cook E, Reiter LT, Thibert R, Jeste SS (2016) Identification of a distinct developmental and behavioral profile in children with Dup15q syndrome. J Neurodev Disord 8:19CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dong S, Walker MF, Carriero NJ, DiCola M, Willsey AJ, Ye AY, Waqar Z, Gonzalez LE, Overton JD, Frahm S, Keaney JF III, Teran NA, Dea J, Mandell JD, Hus Bal V, Sullivan CA, DiLullo NM, Khalil RO, Gockley J, Yuksel Z, Sertel SM, Ercan-Sencicek AG, Gupta AR, Mane SM, Sheldon M, Brooks AI, Roeder K, Devlin B, State MW, Wei L, Sanders SJ (2014) De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Rep 9:16–23CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dreyer Gillette ML, Borner KB, Nadler CB, Poppert KM, Odar Stough C, Swinburne Romine R, Davis AM (2015) Prevalence and health correlates of overweight and obesity in children with autism spectrum disorder. J Dev Behav Pediatr 36:489–496PubMedGoogle Scholar
  20. Farooqi IS (2014) Defining the neural basis of appetite and obesity: from genes to behaviour. Clin Med (Lond) 14:286–289CrossRefGoogle Scholar
  21. Fischbach GD, Lord C (2010) The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68:192–195CrossRefPubMedGoogle Scholar
  22. Fountain MD, Aten E, Cho MT, Juusola J, Walkiewicz MA, Ray JW, Xia F, Yang Y, Graham BH, Bacino CA, Potocki L, van Haeringen A, Ruivenkamp CA, Mancias P, Northrup H, Kukolich MK, Weiss MM, van Ravenswaaij-Arts CM, Mathijssen IB, Levesque S, Meeks N, Rosenfeld JA, Lemke D, Hamosh A, Lewis SK, Race S, Stewart LL, Hay B, Lewis AM, Guerreiro RL, Bras JT, Martins MP, Derksen-Lubsen G, Peeters E, Stumpel C, Stegmann S, Bok LA, Santen GW, Schaaf CP (2017) The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genet Med 19:45–52CrossRefPubMedGoogle Scholar
  23. Gil OD, Sakurai T, Bradley AE, Fink MY, Cassella MR, Kuo JA, Felsenfeld DP (2003) Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface. J Cell Biol 162:719–730CrossRefPubMedPubMedCentralGoogle Scholar
  24. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PM, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A, Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SF, Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goldman S, Wang C, Salgado MW, Greene PE, Kim M, Rapin I (2009) Motor stereotypies in children with autism and other developmental disorders. Dev Med Child Neurol 51:30–38CrossRefPubMedGoogle Scholar
  26. Gu T, Zhao T, Kohli U, Hewes RS (2017) The large and small SPEN family proteins stimulate axon outgrowth during neurosecretory cell remodeling in Drosophila. Dev Biol 431:226–238CrossRefPubMedGoogle Scholar
  27. Guo H, Peng Y, Hu Z, Li Y, Xun G, Ou J, Sun L, Xiong Z, Liu Y, Wang T, Chen J, Xia L, Bai T, Shen Y, Tian Q, Hu Y, Shen L, Zhao R, Zhang X, Zhang F, Zhao J, Zou X, Xia K (2017) Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort. Sci Rep 7:44155CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D, Diallo O, Henrion E, Dionne-Laporte A, Fougerat A, Pshezhetsky AV, Venkateswaran S, Rouleau GA, Michaud JL (2014) De novo mutations in moderate or severe intellectual disability. PLoS Genet 10:e1004772CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR (2013) Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell 152:1051–1064CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hazegh KE, Nemkov T, D’Alessandro A, Diller JD, Monks J, McManaman JL, Jones KL, Hansen KC, Reis T (2017) An autonomous metabolic role for Spen. PLoS Genet 13:e1006859CrossRefPubMedPubMedCentralGoogle Scholar
  31. Helfer G, Tups A (2016) Hypothalamic Wnt signalling and its role in energy balance regulation. J Neuroendocrinol 28:12368CrossRefPubMedGoogle Scholar
  32. Hill AP, Zuckerman KE, Fombonne E (2015) Obesity and autism. Pediatrics 136:1051–1061CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hippolyte L, Maillard AM, Rodriguez-Herreros B, Pain A, Martin-Brevet S, Ferrari C, Conus P, Mace A, Hadjikhani N, Metspalu A, Reigo A, Kolk A, Mannik K, Barker M, Isidor B, Le Caignec C, Mignot C, Schneider L, Mottron L, Keren B, David A, Doco-Fenzy M, Gerard M, Bernier R, Goin-Kochel RP, Hanson E, Green Snyder L, p11.2 European Consortium SViIPC, Ramus F, Beckmann JS, Draganski B, Reymond A, Jacquemont S (2016) The number of genomic copies at the 16p11.2 locus modulates language, verbal memory, and inhibition. Biol Psychiatry 80:129–139CrossRefPubMedGoogle Scholar
  34. Hoischen A, Krumm N, Eichler EE (2014) Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 17:764–772CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hormozdiari F, Penn O, Borenstein E, Eichler EE (2015) The discovery of integrated gene networks for autism and related disorders. Genome Res 25:142–154CrossRefPubMedPubMedCentralGoogle Scholar
  36. Iglesias A, Anyane-Yeboa K, Wynn J, Wilson A, Truitt Cho M, Guzman E, Sisson R, Egan C, Chung WK (2014) The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 16:922–931CrossRefPubMedGoogle Scholar
  37. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, Yamrom B, Lee YH, Narzisi G, Leotta A, Kendall J, Grabowska E, Ma B, Marks S, Rodgers L, Stepansky A, Troge J, Andrews P, Bekritsky M, Pradhan K, Ghiban E, Kramer M, Parla J, Demeter R, Fulton LL, Fulton RS, Magrini VJ, Ye K, Darnell JC, Darnell RB, Mardis ER, Wilson RK, Schatz MC, McCombie WR, Wigler M (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–299CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jones KB, Cottle K, Bakian A, Farley M, Bilder D, Coon H, McMahon WM (2016) A description of medical conditions in adults with autism spectrum disorder: a follow-up of the 1980s Utah/UCLA autism epidemiologic study. Autism 20:551–561CrossRefPubMedGoogle Scholar
  39. Kashevarova AA, Nazarenko LP, Schultz-Pedersen S, Skryabin NA, Salyukova OA, Chechetkina NN, Tolmacheva EN, Rudko AA, Magini P, Graziano C, Romeo G, Joss S, Tumer Z, Lebedev IN (2014) Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Mol Cytogenet 7:97CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kerekes N, Tajnia A, Lichtenstein P, Lundstrom S, Anckarsater H, Nilsson T, Rastam M (2015) Neurodevelopmental problems and extremes in BMI. PeerJ 3:e1024CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kerr EN, Bhan A, Heon E (2015) Exploration of the cognitive, adaptive and behavioral functioning of patients affected with Bardet–Biedl syndrome. Clin Genet 89(4):426–433CrossRefGoogle Scholar
  42. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WS, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT, Thorsteinsdottir U, Stefansson K (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475CrossRefPubMedPubMedCentralGoogle Scholar
  43. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A, Troyanskaya OG (2016) Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci 19:1454–1462CrossRefPubMedPubMedCentralGoogle Scholar
  44. Krumm N, O’Roak BJ, Shendure J, Eichler EE (2014) A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37:95–105CrossRefPubMedGoogle Scholar
  45. Lab I GPF (2017) Genotype and phenotype in families.
  46. Legare S, Chabot C, Basik M (2017) SPEN, a new player in primary cilia formation and cell migration in breast cancer. Breast Cancer Res 19:104CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lek M, Consortium EA et al (2015) Analysis of protein-coding genetic variation in 60,706 humans. bioRxiv. (preprint server)
  48. Maillard AM, Hippolyte L, Rodriguez-Herreros B, Chawner SJ, Dremmel D, Aguera Z, Fagundo AB, Pain A, Martin-Brevet S, Hilbert A, Kurz S, Etienne R, Draganski B, Jimenez-Murcia S, Mannik K, Metspalu A, Reigo A, Isidor B, Le Caignec C, David A, Mignot C, Keren B, p11.2 European C, van den Bree MB, Munsch S, Fernandez-Aranda F, Beckmann JS, Reymond A, Jacquemont S (2016) 16p11.2 locus modulates response to satiety before the onset of obesity. Int J Obes (Lond) 40:870–876CrossRefGoogle Scholar
  49. Martinez S, Scerbo P, Giordano M, Daulat AM, Lhoumeau AC, Thome V, Kodjabachian L, Borg JP (2015) The PTK7 and ROR2 protein receptors interact in the vertebrate WNT/planar cell polarity (PCP) pathway. J Biol Chem 290:30562–30572CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mervis CB, Klein-Tasman BP, Huffman MJ, Velleman SL, Pitts CH, Henderson DR, Woodruff-Borden J, Morris CA, Osborne LR (2015) Children with 7q11.23 duplication syndrome: psychological characteristics. Am J Med Genet A 167:1436–1450CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:D183-D189CrossRefPubMedGoogle Scholar
  52. Miles JH (2011) Autism spectrum disorders—a genetics review. Genet Med 13:278–294CrossRefPubMedGoogle Scholar
  53. Ramachandrappa S, Raimondo A, Cali AM, Keogh JM, Henning E, Saeed S, Thompson A, Garg S, Bochukova EG, Brage S, Trowse V, Wheeler E, Sullivan AE, Dattani M, Clayton PE, Datta V, Bruning JB, Wareham NJ, O’Rahilly S, Peet DJ, Barroso I, Whitelaw ML, Farooqi IS (2013) Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Investig 123:3042–3050CrossRefPubMedPubMedCentralGoogle Scholar
  54. Research SFfA (2017) Simons Simplex Collection.
  55. Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, Tan PL, Phillips HM, Leroux MR, Henderson DJ, Murdoch JN, Copp AJ, Eliot MM, Lupski JR, Kemp DT, Dollfus H, Tada M, Katsanis N, Forge A, Beales PL (2005) Disruption of Bardet–Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37:1135–1140CrossRefPubMedGoogle Scholar
  56. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Sestan N, Lifton RP, Gunel M, Roeder K, Geschwind DH, Devlin B, State MW (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, Murtha MT, Bal VH, Bishop SL, Dong S, Goldberg AP, Jinlu C, Keaney JF 3rd, Klei L, Mandell JD, Moreno-De-Luca D, Poultney CS, Robinson EB, Smith L, Solli-Nowlan T, Su MY, Teran NA, Walker MF, Werling DM, Beaudet AL, Cantor RM, Fombonne E, Geschwind DH, Grice DE, Lord C, Lowe JK, Mane SM, Martin DM, Morrow EM, Talkowski ME, Sutcliffe JS, Walsh CA, Yu TW, Autism Sequencing C, Ledbetter DH, Martin CL, Cook EH, Buxbaum JD, Daly MJ, Devlin B, Roeder K, State MW (2015) insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87:1215–1233CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, Peters BA, McElwain MA, Drmanac R, Beaudet AL, Caskey CT, Yang Y (2013) Truncating mutations of MAGEL2 cause Prader–Willi phenotypes and autism. Nat Genet 45:1405–1408CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schmunk G, Gargus JJ (2013) Channelopathy pathogenesis in autism spectrum disorders. Front Genet 4:222CrossRefPubMedPubMedCentralGoogle Scholar
  60. Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE, LePichon JB, Miller NA, Thiffault I, Dinwiddie DL, Twist G, Noll A, Heese BA, Zellmer L, Atherton AM, Abdelmoity AT, Safina N, Nyp SS, Zuccarelli B, Larson IA, Modrcin A, Herd S, Creed M, Ye Z, Yuan X, Brodsky RA, Kingsmore SF (2014) Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 6:265ra168CrossRefPubMedPubMedCentralGoogle Scholar
  61. Song WJ, Song EA, Jung MS, Choi SH, Baik HH, Jin BK, Kim JH, Chung SH (2015) Phosphorylation and inactivation of glycogen synthase kinase 3beta (GSK3beta) by dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). J Biol Chem 290:2321–2333CrossRefPubMedGoogle Scholar
  62. SPARK (2017) Simons Foundation Powering Autism Research for KnowledgeGoogle Scholar
  63. Stessman HA, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, Wang T, Hoekzema K, Vives L, Vogel I, Brunner HG, van der Burgt I, Ockeloen CW, Schuurs-Hoeijmakers JH, Klein Wassink-Ruiter JS, Stumpel C, Stevens SJ, Vles HS, Marcelis CM, van Bokhoven H, Cantagrel V, Colleaux L, Nicouleau M, Lyonnet S, Bernier RA, Gerdts J, Coe BP, Romano C, Alberti A, Grillo L, Scuderi C, Nordenskjold M, Kvarnung M, Guo H, Xia K, Piton A, Gerard B, Genevieve D, Delobel B, Lehalle D, Perrin L, Prieur F, Thevenon J, Gecz J, Shaw M, Pfundt R, Keren B, Jacquette A, Schenck A, Eichler EE, Kleefstra T (2016) Disruption of POGZ Is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet 98:541–552CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS (2014) Mutations in NOTCH1 cause Adams–Oliver syndrome. Am J Hum Genet 95:275–284CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ, Goldman J, Sulzer D (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143CrossRefPubMedPubMedCentralGoogle Scholar
  66. Utami KH, Winata CL, Hillmer AM, Aksoy I, Long HT, Liany H, Chew EG, Mathavan S, Tay SK, Korzh V, Sarda P, Davila S, Cacheux V (2014) Impaired development of neural-crest cell-derived organs and intellectual disability caused by MED13L haploinsufficiency. Hum Mutat 35:1311–1320PubMedGoogle Scholar
  67. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J, Falchi M, Chen F, Andrieux J, Lobbens S, Delobel B, Stutzmann F, El-Sayed Moustafa JS, Chevre JC, Lecoeur C, Vatin V, Bouquillon S, Buxton JL, Boute O, Holder-Espinasse M, Cuisset JM, Lemaitre MP, Ambresin AE, Brioschi A, Gaillard M, Giusti V, Fellmann F, Ferrarini A, Hadjikhani N, Campion D, Guilmatre A, Goldenberg A, Calmels N, Mandel JL, Le Caignec C, David A, Isidor B, Cordier MP, Dupuis-Girod S, Labalme A, Sanlaville D, Beri-Dexheimer M, Jonveaux P, Leheup B, Ounap K, Bochukova EG, Henning E, Keogh J, Ellis RJ, Macdermot KD, van Haelst MM, Vincent-Delorme C, Plessis G, Touraine R, Philippe A, Malan V, Mathieu-Dramard M, Chiesa J, Blaumeiser B, Kooy RF, Caiazzo R, Pigeyre M, Balkau B, Sladek R, Bergmann S, Mooser V, Waterworth D, Reymond A, Vollenweider P, Waeber G, Kurg A, Palta P, Esko T, Metspalu A, Nelis M, Elliott P, Hartikainen AL, McCarthy MI, Peltonen L, Carlsson L, Jacobson P, Sjostrom L, Huang N, Hurles ME, O’Rahilly S, Farooqi IS, Mannik K, Jarvelin MR, Pattou F, Meyre D, Walley AJ, Coin LJ, Blakemore AI, Froguel P, Beckmann JS (2010) A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  68. Weihl CC, Pestronk A, Kimonis VE (2009) Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord 19:308–315CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ye T, Ip JP, Fu AK, Ip NY (2014) Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun 5:4826CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical GeneticsUniversity of AlbertaEdmontonCanada

Personalised recommendations