Advertisement

Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds

  • Habtamu Abera Goshu
  • Min Chu
  • Wu Xiaoyun
  • Bao Pengjia
  • Ding Xue Zhi
  • Ping Yan
Original Article
  • 28 Downloads

Abstract

Copy number variation (CNV) influences the mRNA transcription levels and phenotypic traits through gene dosage, position effects, alteration of downstream pathways, and modulation of the structure and position of chromosomes. A previous study using the read depth approach to genome resequencing analysis revealed CNVs of the choline kinase beta (CHKB) gene in the copy number variable regions (CNVRs) of yak breeds may influence muscle development and therefore the phenotypic traits of yak breeds. Further work is required to attain a more complete understanding and validate the importance of the detected CNVR of the CHKB gene found in yak breeds, because there is no association studies of the CHKB gene with yak growth traits that have been reported. The goal of this study was to determine the distribution of CHKB copy numbers in five Chinese domestic yak breeds and evaluate their impact on gene expression and growth traits. The data were analyzed using real-time quantitative PCR. In this study, the normal CNV of the CHKB gene was found to be significantly (p < 0.05) associated with greater chest girth and body weight for three age groups of Datong yaks. Our results indicated that the copy number of the CHKB gene is negatively correlated with the mRNA expression level. From this result, we conclude that CNVs of the CHKB gene could be novel markers for growth traits of Chinese domestic yak breeds and might therefore provide a novel opportunity to utilize data on CNVs in designing molecular markers for the selection of animal breeding programs for larger populations of various yaks.

Keywords

CHKB gene Copy number variation Expression analysis Growth traits Yaks 

Abbreviations

aCGH

Array-based comparative genomic hybridization

BTF3

Bovine basic transcription factor 3

CHKB

Choline kinase beta

CHRM3

Cholinergic receptor muscarinic 3

CNV

Copy number variation

CNVRs

Copy number variable regions

Ct

Comparative threshold cycle

CYP4A11

Cytochrome P450 family 4 subfamily A member 11

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase gene

GDNA

Genomic DNA

GPC1

Glypican 1

KCNJ12

Potassium voltage-gated channel subfamily J member 12

KLF6

Kruppel-like factor

LEPR

Leptin receptor

MAPK10

Mitogen-activated protein kinase 10

MYH3

Myosin heavy chain 3

MyHC I

Type I myosin heavy chain, cardiac muscle complex

NAHR

Non-allelic homologous recombination

PCR

Polymerase chain reaction

PGC-1α

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PLA2G2D

Phospholipase A2 group IID

qPCR

Quantitative real-time polymerase chain reaction

QTLs

Quantitative trait locus

RHACD8

Alpha chain (CD8A) gene

Notes

Acknowledgements

We thank Mr. Yong Feng Zhang for guidance and technical assistance during the laboratory work and Dr. Hong Bo Wang, Ms. Li Xiaoxiao, and Mr. Peng Tang for blood sample collection.

Author contributions

HA performed the data analysis and literature review. PY, MC, BP, and DXZ contributed to guidance and supervision during this study. WX was involved in drafting the manuscript and performing the laboratory work. HA wrote the manuscript and prepared the graphics.

Funding

This research was funded by the Innovation Project of Chinese Academy of Agricultural Sciences (Grant number CAAS-ASTIP-2014-LIHPS-01) and the Program of National Beef Cattle and Yak Industrial Technology System (Grant number CARS-37).

Compliance with ethical standards

Conflict of interest

Habtamu Abera Goshu declares that he has no conflict of interest. Min Chu declares that she has no conflict of interest. Wu Xiaoyun declares that he has no conflict of interest. Bao Pengjia declares that he has no conflict of interest. Ding Xue Zhi declares that he has no conflict of interest. Ping Yan declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Supplementary material

438_2018_1530_MOESM1_ESM.doc (497 kb)
Supplementary material 1 (DOC 497 KB)
438_2018_1530_MOESM2_ESM.doc (524 kb)
Supplementary material 2 (DOC 524 KB)
438_2018_1530_MOESM3_ESM.doc (40 kb)
Supplementary material 3 (DOC 39 KB)
438_2018_1530_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 34 KB)

References

  1. Alvarez CE, Akey JM (2012) Copy number variation in the domestic dog. Mamm Genome 23:144–163CrossRefGoogle Scholar
  2. Aoyama C, Liao H, Ishidate K (2004) Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43:266–281CrossRefGoogle Scholar
  3. Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY, Kim JY, Pasaje CF, Lee JS, Shin HD (2010) Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genom 11:232CrossRefGoogle Scholar
  4. Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646CrossRefGoogle Scholar
  5. Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF, Garcia JF, Van Tassell CP, Sonstegard TS, Eichler EE, Liu GE (2012) Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 22:778–790CrossRefGoogle Scholar
  6. Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, Song J, Garcia JF, Sonstegard TS, Tassell CPV, Schnabel RD, Taylor JF, Lewin HA, Liu GE (2016) Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 23:253–262CrossRefGoogle Scholar
  7. Butte AJ, Dzau VJ, Glueck SB (2001) Further defining housekeeping, or “maintenance”, genes focus on ‘a compendium of gene expression in normal human tissues’. Physiol Genom 7:95–96CrossRefGoogle Scholar
  8. Chang CC, Ling LF, Manfred K, Wei C, Too S (2016) Phosphorylation of human choline kinase beta by protein kinase a: it’s impact on activity and inhibition. PLoS One 11(5):e0154702CrossRefGoogle Scholar
  9. Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, Ren J, Huang L (2012) A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genom 13:733CrossRefGoogle Scholar
  10. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369CrossRefGoogle Scholar
  11. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712CrossRefGoogle Scholar
  12. Da Silva JM, Giachetto PF, da Silva LO, Cintra LC, Paiva SR, Yamagishi MEB, Caetano AR (2016) Genome-wide copy number variation (CNV) detection in Nelore cattle reveals highly frequent variants in genome regions harbouring QTLs affecting production traits. BMC Genom 17:454CrossRefGoogle Scholar
  13. Fadista J, Thomsen B, Holm LE, Bendixen C (2010) Copy number variation in the bovine genome. BMC Genom 11:284CrossRefGoogle Scholar
  14. Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57–R66CrossRefGoogle Scholar
  15. Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall’Olio S, Colombo M, Casadio R, Russo V, Portolano B (2010) An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genom 11:639CrossRefGoogle Scholar
  16. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C, Hurles ME, Carter NP, Scherer SW, Lee C (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961CrossRefGoogle Scholar
  17. Ghosh S, Qu Z, Das PJ, Fang E, Juras R, Cothran EG, McDonell S, Kenney DG, Lear TL, Adelson DL, Chowdhary BP, Raudsepp T (2014) Copy number variation in the horse genome. PLoS Genet 10:e1004712CrossRefGoogle Scholar
  18. Gilbert RP Bailey DRC, Shannon NH (1993) Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. Anim Sci 71:1712–1720CrossRefGoogle Scholar
  19. Gutiérrez Ríos P, Kalra AA, Wilson JD, Tanji K, Akman HO, Area Gómez E, Schon EA, DiMauro S (2012) Congenital megaconial myopathy due to a novel defect in the choline kinase beta gene. Arch Neurol 69:657–661CrossRefGoogle Scholar
  20. Haliloglu G, Talim B, Sel CG, Topaloglu H (2015) Clinical characteristics of megaconial congenital muscular dystrophy due to choline kinase beta gene defects in a series of 15 patients. J Inherit Metab Dis 38:1099–1108CrossRefGoogle Scholar
  21. Hou Y, Liu GE, Bickhart DM, Cardone MF, Wang K, Kim E, Matukumalli LK,, Song J, VanRaden P, Sonstegard TS, Tassel CPV, Ventura M (2011) Genomic characteristics of cattle copy number variations. BMC Genom 12:127CrossRefGoogle Scholar
  22. Hou Y, Liu GE, Bickhart DM, Matukumalli LK, Li C, Song J, Gasbarre LC, Tassel CPV, Sonstegard TS (2012) Genomic regions showing copy number variations associated with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct Integr Genom 12:81–92CrossRefGoogle Scholar
  23. Hulse AM, Cai JJ (2013) Genetic variants contribute to gene expression variability in humans. Genetics 193:95–108CrossRefGoogle Scholar
  24. Keel BN, Keele JW, Snelling WM (2017) Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds. Anim Genet 48:141–150CrossRefGoogle Scholar
  25. Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840–848CrossRefGoogle Scholar
  26. Kular J, Tickner JC, Pavlos NJ, Viola HM, Abel T, Lim BS, Yang X, Chen H, Cook R, Hool LC, Zheng MH, Xu J (2015) Choline kinase beta mutant mice exhibit reduced phosphocholine, elevated osteoclast activity, and low bone mass. J Biol Chem 290:1729–1742CrossRefGoogle Scholar
  27. Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL (2007) Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol 7:95CrossRefGoogle Scholar
  28. Li Z, Wu G, Sher RB, Khavandgar Z, Hermansson M, Cox GA, Doschak MR, Murshed M, Beier F, Vance DV (2014) Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta 1840:2112–2122CrossRefGoogle Scholar
  29. Liang C, Wang L, Wu X, Wang K, Ding X, Wang M, Ding XZ, Wang M, Chu M, Xie X, Qiu Q, Yan P (2016) Genome-wide association study identifies loci for the polled phenotype in yak. PLoS One 11:e0158642CrossRefGoogle Scholar
  30. Lin YQ, Wang GS, Feng J, Huang JQ, Xu YO, Jin SY, Li YP, Jiang ZR, Zheng YC (2010) Comparison of enzyme activities and gene expression profiling between yak and bovine skeletal muscles. Lives Sci 135:93–97CrossRefGoogle Scholar
  31. Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander LJ, Coutinho LL, Dell’Aquila ME, Gasbarre LC, Lacalandra G, Li RW, Matukumalli LK, Nonneman D, Regitano LC, Smith TP, Song J, Sonstegard TS, Van Tassell CP, Ventura M, Eichler EE, McDaneld TG, Keele JW (2010) Analysis of copy number variations among diverse cattle breeds. Genome Res 20:693–670CrossRefGoogle Scholar
  32. Liu J, Zhang L, Xu L, Ren H, Lu J, Zhang X, Zhang S, Zhou X, Wei C, Zhao F, Du L (2013) Analysis of copy number variations in the sheep genome using 50 K SNP Bead Chip array. BMC Genom 14:229CrossRefGoogle Scholar
  33. Liu GE, Xu L, Huang K (2014a) Recent advances in studying of copy number variation and gene expression. Gene Express Genet Genom 7:1–5CrossRefGoogle Scholar
  34. Liu WB, Liu J, Liang CN, Guo X, Bao PJ, Chu M, Ding XZ, Wang HB, Zhu XS, Yan P (2014b) Associations of single nucleotide polymorphisms in candidate genes with the polled trait in Datong domestic yaks. Anim Genet 45:138–141CrossRefGoogle Scholar
  35. Liu M, Lia B, Huanga Y, Yanga M, Lana X et al (2016) Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Live Sci 194:44–50CrossRefGoogle Scholar
  36. Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, Zinovieva N, Barbieri J, Seichter D, Russ I, Eggen A, Hellenthal G, Brem G, Blum H, Krebs S, Capitan A (2017) Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat Genet 49:470–475CrossRefGoogle Scholar
  37. Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot MT, Antonarakis SE, Reymond A (2006) Submicroscopic deletion in patients with Williams–Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet 79:332–341CrossRefGoogle Scholar
  38. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HYK, Leng J, Li R, Li Y, Lin C-Y, Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X, Stromberg MP, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Wang J, Ye K, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO, 100 Genomes Project (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65CrossRefGoogle Scholar
  39. Mitsuhashi S, Nishino I (2013) Megaconial congenital muscular dystrophy due to loss-of-function mutations in choline kinase. Curr Opin Neurol 26:536–543CrossRefGoogle Scholar
  40. Mitsuhashi S, Ohkuma A, Talim B, Karahashi M, Koumura T, Aoyama C, Kurihara M, Quinlivan R, Sewry C, Mitsuhashi H, Goto K, Koksal B, Kale G, Ikeda K, Taguchi R, Noguchi S, Hayashi YK, Nonaka I, Sher RB, Sugimoto H, Nakagawa Y, Cox GA, Topaloglu H, Nishino I (2011a) A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet 88:845–851CrossRefGoogle Scholar
  41. Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I, Hayashi YK, Noguchi S, Sher RB, Nakagawa Y, Manfredi G, Goto Y, Cox GA, Nishino, Ichizo I (2011b) Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 20:3841–3851CrossRefGoogle Scholar
  42. Miyagawa T, Kawashima M, Nishida N, Ohashi J, Kimura R, Fujimoto A, Shimada M, Morishita S, Shigeta T, Lin L, Hong SC, Faraco J, Shin YK, Jeong JH, Okazaki Y, Tsuji S, Honda M, Honda Y, Mignot E, Tokunaga K (2008) Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet 40:1324–1328CrossRefGoogle Scholar
  43. Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L, Kaleem M, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, Holmans P, Heward CB, Reiman EM, Stephan D, Hardy J (2007) A survey of genetic human cortical gene expression. Nat Genet 39:1494–1499CrossRefGoogle Scholar
  44. Olshen AB, Venkatraman E, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572CrossRefGoogle Scholar
  45. Paudel Y, Madsen O, Megens HJ, Frantz LA, Bosse M, Bastiaansen JW, Crooijmans RP, Groenen MA (2013) Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genom 14:1–13CrossRefGoogle Scholar
  46. Qiu Q, Wang L, Wang K, Yang Y, Ma T, Wang Z, Zhang X, Ni Z, Hou F, Long R, Abbott R, Lenstra J, Liu J (2015) Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Commun 6:10283CrossRefGoogle Scholar
  47. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107CrossRefGoogle Scholar
  48. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1107CrossRefGoogle Scholar
  49. Seroussi E, Klompus S, Silanikove M, Krifucks O, Shapiro F, Gertler A, Leitner G (2013) Nonbactericidal secreted phospholipase A2s are potential anti-inflammatory factors in the mammary gland. Immunogenetics 65:861–871CrossRefGoogle Scholar
  50. Sher RB, Aoyama C, Huebsch KA, Ji S, Kerner J, Yang Y, Frankel WN, Hoppel CL, Wood PA, Vance DE, Cox GA (2006) A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem 281:4938–4948CrossRefGoogle Scholar
  51. Sherriff JL, O’Sullivan TA, Properzi C, Oddo J-L, Adams LA (2016) Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr 7:5–13CrossRefGoogle Scholar
  52. Shi T, Xu Y, Yang M, Huang Y, Lan X, Lei C, Qi X, Yang X, Chen H (2016) Copy number variations at LEPR gene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim Sci J 87:336–343CrossRefGoogle Scholar
  53. Song QQ, Chai ZX, Xin JW, Zhao SJ, Ji QM, Zhang CF, Ma ZJ, Zhong JC (2015) Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene. Genet Mol Res 14:1763–1770CrossRefGoogle Scholar
  54. Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X, Moore SS (2011) Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genom 12:559CrossRefGoogle Scholar
  55. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853CrossRefGoogle Scholar
  56. Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, Beck S (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 40:90–95CrossRefGoogle Scholar
  57. Wang XF, Nahashon S, Feaster TK, Bohannon-Stewart A, Adefope N (2010) An initial map of chromosomal segmental copy number variations in the chicken. BMC Genom 11:351CrossRefGoogle Scholar
  58. Wang MD, Dzama K, Hefer CA, Muchadeyi FC (2015) Genomic population structure and prevalence of copy number variations in South African Nguni cattle. BMC Genom 16:894CrossRefGoogle Scholar
  59. Wiener G, Han JL, Long RJ (2003) The yak. Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, Bangkok, pp 189–200Google Scholar
  60. Wu G, Vance DE (2010) Choline kinase and its function. Biochem Cell Biol 88:559–564CrossRefGoogle Scholar
  61. Wu G, Sher RB, Cox GA, Vance DE (2009) Understanding the muscular dystrophy caused by deletion of choline kinase beta in mice. Biochim Biophys Acta 1791:347–356CrossRefGoogle Scholar
  62. Xu Y, Zhang L, Shi T, Zhou Y, Cai H, Lan X, Zhang C, Lei C, Chen H (2013) Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm Genome 24:508–516CrossRefGoogle Scholar
  63. Xu Y, Shi T, Cai H, Zhou Y, Lan X, Zhang C, Lei C, Qi X, Chen H (2014a) Associations of MYH3 gene copy number variations with transcriptional expression and growth traits in Chinese cattle. Genet 535:106–111Google Scholar
  64. Xu L, Cole JB, Bickhart DM, Hou Y, Song J, VanRaden PM, Sonstegard TS, Van Tassell CP, Liu GE (2014b) Genome-wide CNV analysis reveals additional variants associated with milk production traits in Holsteins. BMC Genom 15:683CrossRefGoogle Scholar
  65. Xu L, Bickhart DM, Cole JB, Schroeder SG, Song J, Tassell CP, Sonstegard TS, Liu GE (2015) Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol Biol Evol 32(3):711–725CrossRefGoogle Scholar
  66. Xu L, Hou Y, Bickhart DM, Zhou Y, Hay el HA, Song J, Sonstegard TS, Van Tassell CP, Liu GE (2016) Population-genetic properties of differentiated copy number variations in cattle. Sci Rep 6:23161CrossRefGoogle Scholar
  67. Xu Y, Jiang Y, Shi T, Cai H, Lan X, Zhao X, Plath M, Chen H (2017) Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 12:e0183921CrossRefGoogle Scholar
  68. Yang M, Lv J, Zhang L, Li M, Zhou Y, Lan X, Lei C, Chen H (2017) Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Sci Rep 7:46599CrossRefGoogle Scholar
  69. Yi G, Qu L, Chen S, Xu G, Yang N (2015) Genome-wide copy number profiling using high-density SNP array in chickens. Anim Genet 46(2):148–157CrossRefGoogle Scholar
  70. Yim SH, Chung YJ, Jin EH, Shim SC, Kim JY, Kim YS, Hu HJ, Shin SH, Pae HO, Zouali M, Chung HT (2011) The potential role of VPREB1 gene copy number variation in susceptibility to rheumatoid arthritis. Mol Immunol 48:1338–1343CrossRefGoogle Scholar
  71. Zhang G, Chen W, Xue M, Wang Z, Chang H, Han X, Liao X, Wang D (2008) Analysis of genetic diversity and population structure of Chinese yak breeds (Bos grunniens) using microsatellite markers. J Genet Genom 35:233–238CrossRefGoogle Scholar
  72. Zhang L, Jia S, Yang M, Xu Y, Li C, Sun J, Huang Y, Lan X, Lei C, Zhou Y, Zhang C, Zhao X, Chen H (2014) Detection of copy number variations and their effects in Chinese bulls. BMC Genom 15:480CrossRefGoogle Scholar
  73. Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, Shao X, Han J, Wan D, Qiu Q (2016) Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genom 17:379CrossRefGoogle Scholar
  74. Zhou Y, Utsunomiya YT, Xu L, Hay EH, Bickhart DM, Alexandre PA, Rosen BD, Schroeder SG, Carvalherio R, Neves HHR, Sonstegard TS, Tassell CPV, Ferraz SJB, Fukumasu H, Garcia JF, Liu GE (2016) Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus. BMC Genom 17:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Key Laboratory of Yak Breeding Engineering of Gansu ProvinceChinese Academy of Agricultural ScienceLanzhouChina
  2. 2.Oromia Agricultural Research InstituteBako Agricultural Research CenterBakoEthiopia

Personalised recommendations