Advertisement

Molecular Genetics and Genomics

, Volume 293, Issue 3, pp 623–633 | Cite as

Gene-based SNP identification and validation in soybean using next-generation transcriptome sequencing

  • Yong Guo
  • Bohong Su
  • Junyong Tang
  • Fulai Zhou
  • Li-Juan Qiu
Original Article

Abstract

Gene-based molecular markers are increasingly used in crop breeding programs for marker-assisted selection. However, identification of genetic variants associated with important agronomic traits has remained a difficult task in soybean. RNA-Seq provides an efficient way, other than assessing global expression variations of coding genes, to discover gene-based SNPs at the whole genome level. In this study, RNA isolated from four soybean accessions each with three replications was subjected to high-throughput sequencing and a range of 44.2–65.9 million paired-end reads were generated for each library. A total of 75,209 SNPs were identified among different genotypes after combination of replications, 89.1% of which were located in expressed regions and 27.0% resulted in amino acid changes. GO enrichment analysis revealed that most significant enriched genes with nonsynonymous SNPs were involved in ribonucleotide binding or catalytic activity. Of 22 SNPs subjected to PCR amplification and Sanger sequencing, all of them were validated. To test the utility of identified SNPs, these validated SNPs were also assessed by genotyping a relative large population with 393 wild and cultivated soybean accessions. These SNPs identified by RNA-Seq provide a useful resource for genetic and genomic studies of soybean. Moreover, the collection of nonsynonymous SNPs annotated with their predicted functional effects also provides a valuable asset for further discovery of genes, identification of gene variants, and development of functional markers.

Keywords

RNA-Seq Single-nucleotide polymorphism Soybean Nonsynonymous SNPs Next-generation sequencing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31471520), 13th Five-Year Plan for Precise Identification and Germplasm Enhancement of Economic Crops, and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences.

Author contributions

YG and LJQ conceived and designed the experiments. YG, BS, JT and FZ performed the experiments. YG and LJQ analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2017_1410_MOESM1_ESM.xlsx (9 kb)
Online Resource 1. The morphology of soybean accessions used for RNA-seq (XLSX 9 KB)
438_2017_1410_MOESM2_ESM.xlsx (9 kb)
Online Resource 2. Primers list for SNP validation (XLSX 9 KB)
438_2017_1410_MOESM3_ESM.xlsx (29 kb)
Online Resource 3. The information of soybean accessions used for genotyping (XLSX 28 KB)
438_2017_1410_MOESM4_ESM.xlsx (3.1 mb)
Online Resource 4. All SNPs identified in the soybean transcriptome sequencing (XLSX 3161 KB)

References

  1. Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA, Kassem MA (2013) A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. J Plant Genome Sci 1:80–89Google Scholar
  2. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560CrossRefPubMedGoogle Scholar
  3. Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A, Rau D, Rodriguez M, Panziera A, Venturini L, Attene G, Albertini E, Jackson SA, Nanni L, Fernie AR, Nikoloski Z, Bertorelle G, Delledonne M, Papa R (2014) Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell 26(5):1901–1912CrossRefPubMedPubMedCentralGoogle Scholar
  4. Birt DF, Hendrich S, Alekel DL, Anthony M (2004) Soybean and the prevention of chronic human disease. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. American Society of Agronomy, Madison, pp 1047–1117Google Scholar
  5. Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176(1):685–696CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chopra R, Burow G, Farmer A, Mudge J, Simpson CE, Wilkins TA, Baring MR, Puppala N, Chamberlin KD, Burow MD (2015) Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L. Mol Genet Genomics 290:1169–1180CrossRefPubMedGoogle Scholar
  7. Chung WH, Jeong N, Kim J, Lee WK, Lee YG, Lee SH, Yoon W, Kim JH, Choi IY, Choi HK, Moon JK, Kim N, Jeong SC (2014) Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Res 21:153–167CrossRefPubMedGoogle Scholar
  8. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92CrossRefPubMedPubMedCentralGoogle Scholar
  9. Djari A, Esquerre D, Weiss B, Martins F, Meersseman C, Boussaha M, Klopp C, Rocha D (2013) Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genom 14:307CrossRefGoogle Scholar
  10. dos Santos JVM, Valliyodan B, Joshi T, Khan SM, Liu Y, Wang JX, Vuong TD, de Oliveira MF, Marcelino-Guimaraes FC, Xu D, Nguyen HT, Abdelnoor RV (2016) Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing. BMC Genom 17:110CrossRefGoogle Scholar
  11. Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64-W70CrossRefPubMedCentralGoogle Scholar
  12. Filichkin SA, Priest HD, Givan SA, Shen RK, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet Chapter 2:Unit 2.12Google Scholar
  14. Geraldes A, Pang J, Thiessen N, Cezard T, Moore R, Zhao YJ, Tam A, Wang SC, Friedmann M, Birol I, Jones SJM, Cronk QCB, Douglas CJ (2011) SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol Ecol Resour 11:81–92CrossRefPubMedGoogle Scholar
  15. Goettel W, Xia E, Upchurch R, Wang ML, Chen PY, An YQC (2014) Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genom 15:299CrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  17. Hartman GL, West ED, Herman TK (2011) Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3:5–17CrossRefGoogle Scholar
  18. Jeong N, Suh SJ, Kim MH, Lee S, Moon JK, Kim HS, Jeong SC (2012) Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24:4807–4818CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jones SI, Vodkin LO (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS ONE 8:e59270CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, Park D, Ma J, Kim WY, Kim BC, Park S, Lee KA, Kim DH, Kim KH, Shin JH, Jang YE, Do Kim K, Liu WX, Chaisan T, Kang YJ, Lee YH, Kim KH, Moon JK, Schmutz J, Jackson SA, Bhak J, Lee SH (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 107:22032–22037CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW, He WM, Qin N, Wang B, Li J, Jian M, Wang JA, Shao GH, Wang J, Sun SSM, Zhang GY (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059CrossRefPubMedGoogle Scholar
  22. Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha BK, Kang ST, Park BS, Moon JK, Kim N, Jeong SC (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636CrossRefPubMedGoogle Scholar
  23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM, Chang RZ, Liang QS, Guo Y, Ye C, Wang XB, Tao Y, Guan RX, Wang JY, Liu YL, Jin LG, Zhang XQ, Liu ZX, Zhang LJ, Chen J, Wang KJ, Nielsen R, Li RQ, Chen PY, Li WB, Reif JC, Purugganan M, Wang J, Zhang MC, Wang J, Qiu LJ (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom 14:579CrossRefGoogle Scholar
  25. Li YH, Zhou GY, Ma JX, Jiang WK, Jin LG, Zhang ZH, Guo Y, Zhang JB, Sui Y, Zheng LT, Zhang SS, Zuo QY, Shi XH, Li YF, Zhang WK, Hu YY, Kong GY, Hong HL, Tan B, Song J, Liu ZX, Wang YS, Ruan H, Yeung CKL, Liu J, Wang HL, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li RQ, Qiu LJ (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052CrossRefPubMedGoogle Scholar
  26. Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63:86–99PubMedGoogle Scholar
  27. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2119Google Scholar
  28. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the Phytochrome A gene. Genetics 180:995–1007CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu SM, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang CL, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260PubMedGoogle Scholar
  30. Liu G, Zhao L, Averitt BJ, Liu Y, Zhang B, Chang R, Ma Y, Luan X, Guan R, Qiu L (2015) Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Crop J 3:371–378CrossRefGoogle Scholar
  31. Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative genetics In: Soybeans: improvement, production, and uses, 3rd edn. ASA, CSSA, and SSSA, Madison (WI), pp 137–214Google Scholar
  32. Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ping JQ, Liu YF, Sun LJ, Zhao MX, Li YH, She MY, Sui Y, Lin F, Liu XD, Tang ZX, Nguyen H, Tian ZX, Qiu LJ, Nelson RL, Clemente TE, Specht JE, Ma JX (2014) Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell 26:2831–2842CrossRefPubMedPubMedCentralGoogle Scholar
  34. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  35. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15CrossRefGoogle Scholar
  36. Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  37. Shen YT, Zhou ZK, Wang Z, Li WY, Fang C, Wu M, Ma YM, Liu TF, Kong LA, Peng DL, Tian ZX (2014) Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26:996–1008CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shi Z, Bachleda N, Pham AT, Bilyeu K, Shannon G, Nguyen H, Li ZL (2015a) High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean. Mol Breeding 35:1–10CrossRefGoogle Scholar
  39. Shi Z, Liu SM, Noe J, Arelli P, Meksem K, Li ZL (2015b) SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genom 16:314CrossRefGoogle Scholar
  40. Singh G (2010) The soybean: botany, production and uses. CABI Publishing, WallingfordGoogle Scholar
  41. Singh VK, Mangalam AK, Dwivedi S, Naik S (1998) Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques 24:318–319PubMedGoogle Scholar
  42. Song QJ, Hyten DL, Jia GF, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8:e54985CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL, McClean PE, Qiu LJ, Ma JX (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563–8568CrossRefPubMedPubMedCentralGoogle Scholar
  44. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-SEq. Bioinformatics 25:1105–1111CrossRefPubMedPubMedCentralGoogle Scholar
  45. Vidal RO, do Nascimento LC, Mondego JMC, Pereira GAG, Carazzolle MF (2012) Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genet Mol Biol 35:331–334CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wan JR, Vuong T, Jiao YQ, Joshi T, Zhang HX, Xu D, Nguyen HT (2015) Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genom 16:148CrossRefGoogle Scholar
  47. Wang ET, Sandberg R, Luo SJ, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476CrossRefPubMedPubMedCentralGoogle Scholar
  48. Watanabe S, Hideshima R, Xia ZJ, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262CrossRefPubMedPubMedCentralGoogle Scholar
  49. Watanabe S, Xia ZJ, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xia ZJ, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu SX, Wu HY, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164CrossRefPubMedPubMedCentralGoogle Scholar
  51. Xu ML, Xu ZH, Liu BH, Kong FJ, Tsubokura Y, Watanabe S, Xia ZJ, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yang M, Xu LM, Liu YL, Yang PF (2015) RNA-Seq uncovers SNPs and alternative splicing events in Asian lotus (Nelumbo nucifera). PLoS ONE 10:e0125702CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY, Yu YJ, Shu LP, Zhao YJ, Ma YM, Fang C, Shen YT, Liu TF, Li CC, Li Q, Wu M, Wang M, Wu YS, Dong Y, Wan WT, Wang X, Ding ZL, Gao YD, Xiang H, Zhu BG, Lee SH, Wang W, Tian ZX (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yong Guo
    • 1
  • Bohong Su
    • 1
    • 2
  • Junyong Tang
    • 1
  • Fulai Zhou
    • 1
  • Li-Juan Qiu
    • 1
  1. 1.The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.College of AgricultureNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations