Molecular Genetics and Genomics

, Volume 292, Issue 6, pp 1323–1340 | Cite as

Identification, classification and transcriptional profiles of dirigent domain-containing proteins in sugarcane

  • Paula Macedo Nobile
  • Alexandra Bottcher
  • Juliana L. S. Mayer
  • Michael S. Brito
  • Ivan A. dos Anjos
  • Marcos Guimarães de Andrade Landell
  • Renato Vicentini
  • Silvana Creste
  • Diego Mauricio Riaño-Pachón
  • Paulo Mazzafera
Original Article


Dirigent (DIR) proteins, encoded by DIR genes, are referred to as “dirigent” because they direct the outcome of the coupling of the monolignol coniferyl alcohol into (+) or (−) pinoresinol, the first intermediates in the enantiocomplementary pathways for lignan biosynthesis. DIR domain-containing or DIR-like proteins are, thus, termed for not having a clear characterization. A transcriptome- and genome-wide survey of DIR domain-containing proteins in sugarcane was carried out, in addition to phylogenetic, physicochemical and transcriptional analyses. A total of 120 non-redundant sequences containing the DIR domain were identified and classified into 64 groups according to phylogenetic and sequence alignment analyses. In silico analysis of transcript abundance showed that these sequences are expressed at low levels in leaves and genes in the same phylogenetic clade have similar expression patterns. Expression analysis of ShDIR1-like transcripts in the culm internodes of sugarcane demonstrates their abundance in mature internodes, their induction by nitrogen fertilization and their predominant expression in cells that have a lignified secondary cell wall, such as vascular bundles of young internodes and parenchymal cells of the pith of mature internodes. Due to the lack of information about the functional role of DIR in plants, a possible relationship is discussed between the ShDIR1-like transcriptional profile and cell wall development in parenchyma cells of sugarcane culm, which typically accumulates large amounts of sucrose. The number of genes encoding the DIR domain-containing proteins in sugarcane is intriguing and is an indication per se that these proteins may have an important metabolic role and thus deserve to be better studied.


Saccharum spp. Lignan Phylogeny Transcriptome- and genome-wide survey Protein homology modeling 



We acknowledge Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support (2008/58035-6) and fellowships granted to PMN (2010/08232-0 and 2012/08540-1) and MSB (2010/11476-8). We thank Laerti Reis Roque for technical support, Pedro Araújo for advice in the in situ hybridization experiments and Larissa M. Andrade for figure preparation. AB and PM thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Coordination for the Improvement of Higher Education Personnel) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) for Ph.D. and Research fellowships, respectively.

Supplementary material

438_2017_1349_MOESM1_ESM.fasta (87 kb)
Data S1. The sugarcane DIR domain-containing protein amino acid sequences in Fasta format (FASTA 86 kb)
Data S2. The sugarcane DIR domain-containing protein sequences obtained from different databases clustered with at least 96% of identity (FASTA.CLSTR 16 kb)
438_2017_1349_MOESM3_ESM.xlsx (91 kb)
Data S3. Percent Identity Matrix of Dir-c amino acid sequences generated by Clustal2.1 (XLSX 91 kb)
438_2017_1349_MOESM4_ESM.pdf (2.7 mb)
Supplementary material 4 (PDF 2772 kb)
438_2017_1349_MOESM5_ESM.pdf (674 kb)
Supplementary material 5 (PDF 674 kb)


  1. Abraha TG (2005) Isolation and characterisation of a culm-specific promoter element from sugarcane. Stellenbosch University, StellenboschGoogle Scholar
  2. Arasan SKT, Park JI, Ahmed NU, Jung HJ, Hur Y, Kang KK, Lim YP, Nou IS (2013) Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiol Biochem 67:144–153. doi: 10.1016/j.plaphy.2013.02.030 CrossRefGoogle Scholar
  3. Asano J, Chiba K, Tada M, Yoshii T (1996) Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochemistry 42(3):713–717CrossRefPubMedGoogle Scholar
  4. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(web server issue):W202–W208. doi: 10.1093/nar/gkp335 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(web server issue):W252–W258. doi: 10.1093/nar/gku340 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bottcher A, Cesarino I, Santos AB, Vicentini R, Mayer JL, Vanholme R, Morreel K, Goeminne G, Moura JC, Nobile PM, Carmello-Guerreiro SM, Anjos IA, Creste S, Boerjan W, Landell MG, Mazzafera P (2013) Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol 163(4):1539–1557. doi: 10.1104/pp.113.225250 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57(6):883–897CrossRefPubMedGoogle Scholar
  8. Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54(4):503–517. doi: 10.1023/B:PLAN.0000038255.96128.41 CrossRefPubMedGoogle Scholar
  9. Casu RE, Jarmey JM, Bonnett GD, Manners JM (2007) Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genom 7(2):153–167. doi: 10.1007/s10142-006-0038-z CrossRefGoogle Scholar
  10. Cesarino I, Araújo P, Sampaio Mayer JL, Paes Leme AF, Mazzafera P (2012) Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development. Plant Physiol Biochem 55:66–76. doi: 10.1016/j.plaphy.2012.03.014 CrossRefPubMedGoogle Scholar
  11. Cesarino I, Araújo P, Sampaio Mayer JL, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P (2013) Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot 64(6):1769–1781. doi: 10.1093/jxb/ert045 CrossRefPubMedGoogle Scholar
  12. Choi YW, Takamatsu S, Khan SI, Srinivas PV, Ferreira D, Zhao J, Khan IA (2006) Schisandrene, a dibenzocyclooctadiene lignan from Schisandra chinensis: structure-antioxidant activity relationships of dibenzocyclooctadiene lignans. J Nat Prod 69(3):356–359CrossRefPubMedGoogle Scholar
  13. Chung YM, Wang HC, El-Shazly M, Leu YL, Cheng MC, Lee CL, Chang FR, Wu YC (2011) Antioxidant and tyrosinase inhibitory constituents from a desugared sugar cane extract, a byproduct of sugar production. J Agric Food Chem 59(17):9219–9225. doi: 10.1021/jf202119m CrossRefPubMedGoogle Scholar
  14. Corrêa LG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944. doi: 10.1371/journal.pone.0002944 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231(6):1439–1458. doi: 10.1007/s00425-010-1138-5 CrossRefPubMedGoogle Scholar
  16. Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16(4):407–415CrossRefPubMedGoogle Scholar
  17. Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275(5298):362–366CrossRefPubMedGoogle Scholar
  18. de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GM, Del Bem LE, Vicentini R, Nogueira FT, Campos RA, Nunes SL, Turrini PC, Vieira AP, Ochoa Cruz EA, Corrêa TC, Hotta CT, de Mello Varani A, Vautrin S, da Trindade AS, de Mendonça Vilela M, Lembke CG, Sato PM, de Andrade RF, Nishiyama MY, Cardoso-Silva CB, Scortecci KC, Garcia AA, Carneiro MS, Kim C, Paterson AH, Bergès H, D’Hont A, de Souza AP, Souza GM, Vincentz M, Kitajima JP, Van Sluys MA (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genom 15:540. doi: 10.1186/1471-2164-15-540 CrossRefGoogle Scholar
  19. Dias MO, Junqueira TL, Cavalett O, Cunha MP, Jesus CD, Rossell CE, Maciel Filho R, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161. doi: 10.1016/j.biortech.2011.09.120 CrossRefPubMedGoogle Scholar
  20. Effenberger I, Zhang B, Li L, Wang Q, Liu Y, Klaiber I, Pfannstiel J, Schaller A (2015) Dirigent proteins from cotton (Gossypium sp.) for the atropselective synthesis of gossypol. Angew Chem Int Ed Engl 54(49):14660–14663. doi: 10.1002/anie.201507543 CrossRefPubMedGoogle Scholar
  21. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016. doi: 10.1006/jmbi.2000.3903 CrossRefPubMedGoogle Scholar
  22. Fauré M, Lissi E, Torres R, Videla LA (1990) Antioxidant activities of lignans and flavonoids. Phytochemistry 29(12):3773–3775. doi: 10.1016/0031-9422(90)85329-E CrossRefGoogle Scholar
  23. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(database issue):D222–D230. doi: 10.1093/nar/gkt1223 CrossRefPubMedGoogle Scholar
  24. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152. doi: 10.1093/bioinformatics/bts565 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6(3):143–151. doi: 10.1016/S1074-5521(99)89006-1 CrossRefPubMedGoogle Scholar
  26. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appe RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York. doi: 10.1385/1-59259-890-0:571
  27. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810. doi: 10.1126/science.1137013 CrossRefPubMedGoogle Scholar
  28. Grativol C, Regulski M, Bertalan M, McCombie WR, da Silva FR, Zerlotini Neto A, Vicentini R, Farinelli L, Hemerly AS, Martienssen RA, Ferreira PC (2014) Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. Plant J 79(1):162–172. doi: 10.1111/tpj.12539 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hakeem KR, Chandna R, Ahmad A, Qureshi MI, Iqbal M (2012) Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Appl Biochem Biotechnol 168(4):834–850. doi: 10.1007/s12010-012-9823-4 CrossRefPubMedGoogle Scholar
  30. Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochem Rev 2(3):321–330. doi: 10.1023/B:PHYT.0000045494.98645.a3 CrossRefGoogle Scholar
  31. Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110(35):14498–14503. doi: 10.1073/pnas.1308412110 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jacobsen KR, Maretzki A, Moore PH (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta 105(1):70–80. doi: 10.1111/j.1438-8677.1992.tb00269.x CrossRefGoogle Scholar
  33. Jin-Long G, Li-Ping X, Jing-Ping F, Ya-Chun S, Hua-Ying F, You-Xiong Q, Jing-Sheng X (2012) A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep 31(10):1801–1812. doi: 10.1007/s00299-012-1293-1 CrossRefPubMedGoogle Scholar
  34. Kernan MR, Sendl A, Chen JL, Jolad SD, Blanc P, Murphy JT, Stoddart CA, Nanakorn W, Balick MJ, Rozhon EJ (1997) Two new lignans with activity against influenza virus from the medicinal plant Rhinacanthus nasutus. J Nat Prod 60(6):635–637. doi: 10.1021/np960613i CrossRefPubMedGoogle Scholar
  35. Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49(2):199–214CrossRefPubMedGoogle Scholar
  36. Kim KW, Moinuddin SG, Atwell KM, Costa MA, Davin LB, Lewis NG (2012) Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. J Biol Chem 287(41):33957–33972. doi: 10.1074/jbc.M112.387423 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim KW, Smith CA, Daily MD, Cort JR, Davin LB, Lewis NG (2015) Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95  Å resolution with three isolated active sites. J Biol Chem 290(3):1308–1318. doi: 10.1074/jbc.M114.611780 CrossRefPubMedGoogle Scholar
  38. Kittur FS, Yu HY, Bevan DR, Esen A (2010) Deletion of the N-terminal dirigent domain in maize beta-glucosidase aggregating factor and its homolog sorghum lectin dramatically alters the sugar-specificities of their lectin domains. Plant Physiol Biochem 48(8):731–734. doi: 10.1016/j.plaphy.2010.03.007 CrossRefPubMedGoogle Scholar
  39. Kiyota E, Mazzafera P, Sawaya AC (2012) Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatography-tandem mass spectrometry with a do-it-yourself oligomer database. Anal Chem 84(16):7015–7020. doi: 10.1021/ac301112y CrossRefPubMedGoogle Scholar
  40. Liao Y, Liu S, Jiang Y, Hu C, Zhang X, Cao X, Xu Z, Gao X, Li L, Zhu J, Chen R (2017) Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa). Genes Genom 39(1):47-62CrossRefGoogle Scholar
  41. Li Q, Chen J, Xiao Y, Di P, Zhang L, Chen W (2014) The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance. BMC Genom 15:388. doi: 10.1186/1471-2164-15-388 CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  43. Ma QH (2014) Monocot chimeric jacalins: a novel subfamily of plant lectins. Crit Rev Biotechnol 34(4):300–306. doi: 10.3109/07388551.2013.793650 CrossRefPubMedGoogle Scholar
  44. Ma QH, Zhen WB, Liu YC (2013) Jacalin domain in wheat jasmonate-regulated protein Ta-JA1 confers agglutinating activity and pathogen resistance. Biochimie 95(2):359–365. doi: 10.1016/j.biochi.2012.10.014 CrossRefPubMedGoogle Scholar
  45. Mattiello L, Riaño-Pachón DM, Martins MC, da Cruz LP, Bassi D, Marchiori PE, Ribeiro RV, Labate MT, Labate CA, Menossi M (2015) Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC Plant Biol 15:300. doi: 10.1186/s12870-015-0694-z CrossRefPubMedPubMedCentralGoogle Scholar
  46. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, pp 1–8Google Scholar
  47. Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA 109(25):10101–10106. doi: 10.1073/pnas.1205726109 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Okura VK, de Souza RS, de Siqueira Tada SF, Arruda P (2016) BAC-pool sequencing and assembly of 19 Mb of the complex sugarcane genome. Front Plant Sci 7:342. doi: 10.3389/fpls.2016.00342 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budinska E, Hamann T, Hejatko J (2017) Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot. doi: 10.1093/jxb/erx141 PubMedGoogle Scholar
  50. Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9:51. doi: 10.1186/1472-6807-9-51 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pickel B, Constantin MA, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed Engl 49(1):202–204. doi: 10.1002/anie.200904622 CrossRefPubMedGoogle Scholar
  53. Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, Schaller A (2012) A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins. FEBS J 279(11):1980–1993. doi: 10.1111/j.1742-4658.2012.08580.x CrossRefPubMedGoogle Scholar
  54. Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895. doi: 10.1016/j.biortech.2011.05.081 CrossRefPubMedGoogle Scholar
  55. Ralph S, Park JY, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60(1):21–40. doi: 10.1007/s11103-005-2226-y CrossRefPubMedGoogle Scholar
  56. Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68(14):1975–1991. doi: 10.1016/j.phytochem.2007.04.042 CrossRefPubMedGoogle Scholar
  57. Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W (2008a) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication? In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research, vol 1. Wiley-Blackwell, OxfordGoogle Scholar
  58. Ralph J, Kim H, Lu F, Grabber JH, Leplé JC, Berrio-Sierra J, Derikvand MM, Jouanin L, Boerjan W, Lapierre C (2008b) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J 53(2):368–379. doi: 10.1111/j.1365-313X.2007.03345.x CrossRefPubMedGoogle Scholar
  59. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66CrossRefPubMedGoogle Scholar
  60. Riaño-Pachón DM, Mattiello L (2017) Draft genome sequencing of the sugarcane hybrid SP80-3280 [version 2; referees: 2 approved]. F1000Research 6:861. doi: 10.12688/f1000research.11859.2 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22(6):696–716. doi: 10.1039/b514045p CrossRefPubMedGoogle Scholar
  62. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136(1):2483–2499. doi: 10.1104/pp.104.047019 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Seneviratne HK, Dalisay DS, Kim KW, Moinuddin SG, Yang H, Hartshorn CM, Davin LB, Lewis NG (2015) Non-host disease resistance response in pea (Pisum sativum) pods: biochemical function of DRR206 and phytoalexin pathway localization. Phytochemistry 113:140–148. doi: 10.1016/j.phytochem.2014.10.013 CrossRefPubMedGoogle Scholar
  64. Shi H, Liu Z, Zhu L, Zhang C, Chen Y, Zhou Y, Li F, Li X (2012) Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin (Shanghai) 44(7):555–564. doi: 10.1093/abbs/gms035 CrossRefGoogle Scholar
  65. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  66. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Uchida K, Akashi T, Aoki T (2017) The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol 58(2):398–408. doi: 10.1093/pcp/pcw213 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Umezawa T (2011) Stereoselectivity of the biosynthesis of norlignans and related compounds. The biological activity of phytochemicals, vol 41. Springer, New York, pp 179–197CrossRefGoogle Scholar
  69. Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F, Giglioti EA, Lemos MV, Coutinho LL, Nobrega MP, Carrer H, França SC, Bacci Júnior M, Goldman MH, Gomes SL, Nunes LR, Camargo LE, Siqueira WJ, Van Sluys MA, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon ML, Ferro JA, Silveira HC, Marini DC, Lemos EG, Monteiro-Vitorello CB, Tambor JH, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MM, de Rosa Júnior VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SM, Nobrega FG, Menck CF, Braga MD, Telles GP, Cara FA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13(12):2725–2735. doi: 10.1101/gr.1532103 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vicentini R, Bottcher A, Dos Santos Brito M, Dos Santos AB, Creste S, de Andrade Landell MG, Cesarino I, Mazzafera P (2015) Correction: large-scale transcriptome analysis of two sugarcane genotypes contrasting for lignin content. PLoS One 10(9):e0137698. doi: 10.1371/journal.pone.0137698 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U (2016) Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular poaceae-specific proteins. Mol Plant 9(4):514–527. doi: 10.1016/j.molp.2015.12.009 CrossRefPubMedGoogle Scholar
  72. Wu R, Shang H, Zhu Y, Qi D, Deng X (2009) Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica. Prog Nat Sci 19(3):347–352. doi: 10.1016/j.pnsc.2008.07.010 CrossRefGoogle Scholar
  73. Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55(6):537–549CrossRefPubMedGoogle Scholar
  74. Yue F, Lu F, Regner M, Sun R, Ralph J (2017) Lignin-derived thioacidolysis dimers: reevaluation, new products, authentication, and quantification. Chemsuschem 10(5):830–835. doi: 10.1002/cssc.201700101 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhu L, Zhang X, Tu L, Zeng F, Nie Y, Guo X (2007) Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. J Plant Pathol 89(1):41–45Google Scholar
  76. Ziegler J, Hamberg M, Miersch O, Parthier B (1997) Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol 114(2):565–573CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Centro Avançado da Pesquisa Tecnológica do Agronegócio de CanaInstituto Agronômico de CampinasRibeirão PretoBrazil
  3. 3.Centro de Biologia Molecular e Engenharia Genética, CEBMEGUniversidade Estadual de CampinasCampinasBrazil
  4. 4.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil

Personalised recommendations