Advertisement

Molecular Genetics and Genomics

, Volume 292, Issue 6, pp 1267–1280 | Cite as

Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.)

  • Mulugeta Seyoum Ademe
  • Shoupu He
  • Zhaoe Pan
  • Junling Sun
  • Qinglian Wang
  • Hongde Qin
  • Jinhai Liu
  • Hui Liu
  • Jun Yang
  • Dongyong Xu
  • Jinlong Yang
  • Zhiying Ma
  • Jinbiao Zhang
  • Zhikun Li
  • Zhongmin Cai
  • Xuelin Zhang
  • Xin Zhang
  • Aifen Huang
  • Xianda Yi
  • Guanyin Zhou
  • Lin Li
  • Haiyong Zhu
  • Baoyin Pang
  • Liru Wang
  • Yinhua JiaEmail author
  • Xiongming DuEmail author
Original Article

Abstract

Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p < 0.001). The genome-wide LD decayed within the genetic distance of ~30 to 32 cM at r 2 = 0.1, and decreased to ~1 to 2 cM at r 2 = 0.2, indicating the potential for association mapping. Analysis based on a mixed linear model detected 57 significant (p < 0.01) marker–trait associations, including seven associations for fiber length, ten for fiber micronaire, nine for fiber strength, eight for fiber elongation, five for fiber uniformity index, five for fiber uniformity ratio, six for boll weight and seven for lint percent, for a total of 35 SSR markers, of which 11 markers were associated with more than one trait. Among marker–trait associations, 24 associations coincided with the previously reported quantitative trait loci (QTLs), the remainder were newly identified QTLs/genes. The QTLs identified in this study will potentially facilitate improvement of fiber yield and quality in the future cotton molecular breeding programs.

Keywords

Upland cotton SSRs Linkage disequilibrium Association mapping Fiber quality QTLs 

Notes

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (31301365), the Crop Germplasm Conservation Program of Ministry of Agriculture China (2014NWB034) and the National Science and Technology Support Program of China (2013BAD01B03). We thank the national mid-term cotton gene bank of ICR-CAAS for providing the cotton genotypes.

Compliance with ethical standards

Funding

This study was funded by the National Natural Science Foundation of China (31301365), the Crop Germplasm Conservation Program of Ministry of Agriculture China (2014NWB034) and the National Science and Technology Support Program of China (2013BAD01B03).

Conflict of interest

All the authors declare that they have no any conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors. There is additional documentation related to this study. You may login to the system and click the ‘View Attachments’ link in the Action column.

Supplementary material

438_2017_1346_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 59 kb)
438_2017_1346_MOESM2_ESM.docx (37 kb)
Supplementary material 2 (DOCX 37 kb)

References

  1. Abdurakhmonov I, Kohel R, Yu J, Pepper A, Abdullaev A, Kushanov F, Salakhutdinov I, Buriev Z, Saha S, Scheffler B, Jenkins J, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487CrossRefPubMedGoogle Scholar
  2. Abdurakhmonov I, Saha S, Jenkins J, Buriev Z, Shermatov S, Scheffler B, Pepper A, Yu J, Kohel R, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401–417CrossRefPubMedGoogle Scholar
  3. Abdurakhmonov IY, Buriev ZT, Shermatov SE, Abdullaev AA, Urmonov K, Kushanov F et al (2012) Genetic diversity in Gossypium genus. In: Caliskan M (ed) Genetic diversity in plants. InTech, pp 313–338. http://www.intechopen.com/books/genetic-diversity-inplants/genetic-diversity-in-gossypium-genus. Accessed 05 Apr 2013
  4. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  5. Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  6. Bu M, Stich B, Piepho HP (2011) A general method for controlling the genome-wide type I error rate in linkage and association mapping experiments in plants. Heredity 106:825–831CrossRefGoogle Scholar
  7. Burton GW (1951) Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron J 43:409–417CrossRefGoogle Scholar
  8. Cai C, Ye W, Zhang T, Guo W (2014) Association analysis of fiber quality traits and exploration of elite alleles in Upland cotton cultivars/accessions (Gossypium hirsutum L.). J Integr Plant Biol 56:51–62CrossRefPubMedGoogle Scholar
  9. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  10. Culp TW, Lewis CF (1973) Breeding methods for improving yield and fiber quality of Upland cotton (Gossypium hirsutum). Crop Sci 13:686–689CrossRefGoogle Scholar
  11. Du XM, Zhou ZL, Jia YH, Liu GQ (2007) Collection and conservation of cotton germplasm in China. Cotton Sci 19:346–353Google Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  14. Fang FD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu JX (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genom 15:397CrossRefGoogle Scholar
  15. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  16. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a higher solution platform for quantitative trait locus dissection. Plant J 44:1054–1064CrossRefPubMedGoogle Scholar
  17. Freeman GH (1973) Statistical methods for the analysis of genotype–environment interactions. Heredity 31:339–354CrossRefPubMedGoogle Scholar
  18. Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  19. Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1503–1506CrossRefGoogle Scholar
  20. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Willey, New YorkGoogle Scholar
  21. Gore MA, Fang DD, Poland JA, Zhang JF, Percy RG, Cantrell RG, Thyssen G, Lipka AE (2014) Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome. doi: 10.3835/plantgenome2013.07.0023 Google Scholar
  22. Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genom 9:157–165CrossRefGoogle Scholar
  23. Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  24. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447CrossRefPubMedGoogle Scholar
  25. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefPubMedGoogle Scholar
  26. Hsu HH, Gale F (2001) Regional shifts in China’s cotton production and use. Cotton and wool situation and outlook. Economic Research Service, USDA. http://www.ers.usda.gov/ContentPages/4093190.pdf. Accessed 15 Nov 2014
  27. Hugie KL, Fang DD, Wayne Smith C, Li P, Hinze LL, Hague SS, Jones DC (2016) Utility assessment of published microsatellite markers for fiber length and bundle strength QTL in a cotton breeding program. Crop Sci 56:2983–2995CrossRefGoogle Scholar
  28. Iqbal J, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of Upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554CrossRefGoogle Scholar
  29. Jannink JL, Bink MC, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342CrossRefPubMedGoogle Scholar
  30. Jia Y, Sun X, Sun J, Pan Z, Wang X et al (2014a) Association mapping for epistasis and environmental interaction of yield traits in 323 cotton cultivars under 9 different environments. PLoS One 9:e95882CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jia Y, Wang X, Sun J, Zhou Z, Pan Z, He S, Pan B, Wang L, Du X (2014b) Association mapping of resistance to Verticillium wilt in Gossypium hirsutum L. germplasm. Afr J Biotechnol 13:3165–3172CrossRefGoogle Scholar
  32. Jia YH, Sun JL, Wang XW et al (2015) Molecular diversity and association analysis of drought and salt tolerance in G. hirsutum L. germplasm. J Integr Agric 30:1845–1853Google Scholar
  33. Jiang CX, Wright RJ, El-Zik KM, Paterson A (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kantartzi SK, Stewart JM (2008) Association analysis of fiber traits in Gossypium arboreum accessions. Plant Breed 127:173–179CrossRefGoogle Scholar
  35. Kim HJ, Moon HS, Delhom CD, Zeng LH, Fang DD (2013) Molecular markers associated with the immature fiber (im) gene affecting the degree of cell wall thickening in cotton (Gossypium hirsutum L.). Theor Appl Genet 126:23–31. doi: 10.1007/s00122-012-1956-x CrossRefPubMedGoogle Scholar
  36. Kohel RJ, Yu J, Park YH, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172. doi: 10.1023/A:1012263413418 CrossRefGoogle Scholar
  37. Kwon SH, Torrie JH (1964) Heritability and interrelationship among traits of two soybean population. Crop Sci 4:194–198Google Scholar
  38. Lacape JM, Nguyen TB, Thibivilliers S, Bojinnov TB, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626CrossRefPubMedGoogle Scholar
  39. Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Rouques S, Hau B (2005) QTL analysis of cottonfiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140CrossRefGoogle Scholar
  40. Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S et al (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132. doi: 10.1186/1471-2229-10-132 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ma XX, Ding YZ, Zhou BL, Guo WZ, Lv YH, Zhu XF, Zhang TZ (2008) QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium. J Genet Genom 35:751–762. doi: 10.1016/S1673-8527(08)60231-3 CrossRefGoogle Scholar
  42. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a drum wheat elite collection. Mol Breed 15:271–289CrossRefGoogle Scholar
  43. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63CrossRefPubMedGoogle Scholar
  44. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577CrossRefPubMedGoogle Scholar
  45. Malysheva-Otto LV, Ganal MW, Roder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6CrossRefPubMedPubMedCentralGoogle Scholar
  46. McRae AF, McEwan JC, Dodds KG, Wilson T, Crawford AM, Slate J (2002) Linkage disequilibrium in domestic sheep. Genetics 160:1113–1122PubMedPubMedCentralGoogle Scholar
  47. Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291. doi: 10.1007/s00122-003-1433-7 CrossRefPubMedGoogle Scholar
  48. Mei H, Zhu X, Zhang T (2013) Favorable QTL alleles for yield and its components identified by association mapping in Chinese Upland cotton cultivars. PLoS One 8:e82193CrossRefPubMedPubMedCentralGoogle Scholar
  49. Meredith WR Jr (1977) Backcross breeding to increase fiber strength of cotton. Crop Sci 17:172–175CrossRefGoogle Scholar
  50. Myles S, Peiffer J, Brown P, Ersoz E, Zhang Z, Costich D, Buckler E (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pan ZE, Sun JL, Wang XW, Jia YH, Zhou ZL, Pang BY, Du XM (2008) Screening of SSR core primers with polymorphism on a cotton panel (English abstract). Biodivers Sci 16:555–561CrossRefGoogle Scholar
  52. Park YH, Alabadt MS, Ulloa M, Sicker B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an inter-specific recombinant inbred line cotton population. Mol Genet Genom 274:428–441CrossRefGoogle Scholar
  53. Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype × environment interaction affecting cotton fiber quality. Theor Appl Genet 106:384–396. doi: 10.1007/s00122-002-1025-y CrossRefPubMedGoogle Scholar
  54. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  55. Pritchard JK, Wen X, Falush D (2010) Documentation for structure software version 2.3. University of Chicago. http://pritch.bsd.uchicago.edu/structure.html. Accessed 07 Sep 2014
  56. Qin H, Chen M, Yi X, Bie S, Zhang C, Zhang Y, Lan Y, Meng Y, Yuan Y, Jiao C (2015) Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One 10:e0118073CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rungis D, Llewellyn D, Dennis ES, Lyon BR (2005) Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Aust J Agric Res 56:301–307CrossRefGoogle Scholar
  58. Saeed M, Guo W, Zhang T (2014) Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust J Crop Sci 8:338–346Google Scholar
  59. Saha S, Raska DA, Stelly DM (2006) Upland cotton (Gossypium hirsutum L.) × Hawaiian cotton (G. tomentosum Nutt. Ex. Seem) F1 hybrid hypoaneuploid chromosome substitution series. J Cotton Sci 10:146–154Google Scholar
  60. Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:776CrossRefGoogle Scholar
  61. Said JI, Song MZ, Wang HT, Lin ZX, Zhang XL, Fang DD, Zhang JF (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1003–1025. doi: 10.1007/s00438-014-0963-9 CrossRefGoogle Scholar
  62. Scholl RL, Miller PA (1976) Genetic association between yield and fiber strength in Upland cotton. Crop Sci 16:780–783CrossRefGoogle Scholar
  63. Semagn K, Bjørnstad A, Xu Y (2010) The genetic dissection of quantitative traits in crops. Electron J Biotechol 13:5Google Scholar
  64. Shappley ZW, Jenkins JN, Zhu J, McCarty JC (1998) Quantitative trait loci associated with agronomic and fiber traits of Upland cotton. J Cotton Sci 2:153–163Google Scholar
  65. Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181CrossRefGoogle Scholar
  66. Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY (2006) Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of Upland cotton. Crop Sci 46:61–66. doi: 10.2135/cropsci2005.0056 CrossRefGoogle Scholar
  67. Shen XL, Guo WZ, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380CrossRefGoogle Scholar
  68. Statistical Analysis System (2007) SAS version 9.2. SAS Institute Inc., CaryGoogle Scholar
  69. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730CrossRefPubMedGoogle Scholar
  70. Tan ZY, Fang XM, Tang SY, Zhang JA, Liu DJ, Teng ZH, Li L, Ni HJ, Zheng FM, Liu DX, Zhang TF, Paterson AH, Zhang ZS (2015) Genetic map and QTL controlling fiber quality traits in Upland cotton (Gossypium hirsutum L.). Euphytica 203:615–628. doi: 10.1007/s10681-014-1288-9 CrossRefGoogle Scholar
  71. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN et al (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ulloa M, Meredith WR (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intra-specific population. J Cotton Sci 4:161–170Google Scholar
  73. Ulloa M, Saha S, Jenkin N, Meredith WR, McCarty JC, Stelly DM (2005) Chromosomal assignment of RFLP linkage groups harboring important QTL on an intra-specific cotton (Gossypium hirsutum L.) joinmap. J Hered 96:132–144. doi: 10.1093/jhered/esi02 CrossRefPubMedGoogle Scholar
  74. Van-Esbroeck G, Bownam DT (1998) Cotton germplasm diversity and its importance to cultivar development. J Cotton Sci 2:121–129Google Scholar
  75. Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TZ (2006) QTL mapping of fiber quality in an elite hybrid derived-RILs in Upland cotton. Euphytica 152:367–378CrossRefGoogle Scholar
  76. Wang FR, Xu ZZ, Sun R, Gong YC, Liu GD, Zhang JX, Wang LM, Zhang CY, Fan SJ, Zhang J (2013) Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breed 32:547–562. doi: 10.1007/s11032-013-9888-y CrossRefGoogle Scholar
  77. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:140–186. doi: 10.1016/S0065-2113(02)78004-8 Google Scholar
  78. Wu KM, Guo YY (2005) The evolution of cotton pest management practices in china. Annu Rev Entomol 50:31–52CrossRefPubMedGoogle Scholar
  79. Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449CrossRefGoogle Scholar
  80. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet 38:203–208CrossRefPubMedGoogle Scholar
  81. Zeng LH, Meredith WR, Gutierrez QA, Boykin DL (2009) Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor Appl Genet 119:93–103. doi: 10.1007/s00122-009-1020-7 CrossRefPubMedGoogle Scholar
  82. Zhang J, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201Google Scholar
  83. Zhang TZ, Yuan TL, Yu J, Guo WZ, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268CrossRefPubMedGoogle Scholar
  84. Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in Upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348CrossRefGoogle Scholar
  85. Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y (2013) Variations and transmission of QTL alleles for yield and fiber qualities in Upland cotton cultivars developed in China. PLoS One 8:e57220CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhao YL, Wang HM, Chen W, Li YH (2014) Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One 9:e86308CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhu C, Gore M, Buckler E, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar
  88. Ziegler A, Konig IR, Thompson JR (2008) Biostatistical aspects of genome-wide association studies. Biom J 50:8–28CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mulugeta Seyoum Ademe
    • 1
  • Shoupu He
    • 1
  • Zhaoe Pan
    • 1
  • Junling Sun
    • 1
  • Qinglian Wang
    • 2
  • Hongde Qin
    • 3
  • Jinhai Liu
    • 4
  • Hui Liu
    • 5
  • Jun Yang
    • 6
  • Dongyong Xu
    • 8
  • Jinlong Yang
    • 4
  • Zhiying Ma
    • 7
  • Jinbiao Zhang
    • 9
  • Zhikun Li
    • 7
  • Zhongmin Cai
    • 4
  • Xuelin Zhang
    • 10
  • Xin Zhang
    • 2
  • Aifen Huang
    • 11
  • Xianda Yi
    • 3
  • Guanyin Zhou
    • 4
  • Lin Li
    • 9
  • Haiyong Zhu
    • 1
  • Baoyin Pang
    • 1
  • Liru Wang
    • 1
  • Yinhua Jia
    • 1
    Email author
  • Xiongming Du
    • 1
    Email author
  1. 1.State Key Laboratory of Cotton Biology, Institute of Cotton ResearchChinese Academy of Agricultural Sciences (ICR, CAAS)AnyangChina
  2. 2.Henan Institute of Science and TechnologyXinxiangChina
  3. 3.Cash Crop InstituteHubei Academy of Agricultural SciencesWuhanChina
  4. 4.Zhongmian Cotton Seed Industry Technology Co., LtdZhengzhouChina
  5. 5.Jing Hua Seed Industry Technologies IncJingzhouChina
  6. 6.Cotton Research Institute of Jiangxi ProvinceJiujiangChina
  7. 7.Key Laboratory of Crop Germplasm Resources of HebeiAgricultural University of HebeiBaodingChina
  8. 8.Guoxin Rural Technical Service AssociationHebeiChina
  9. 9.Zhongli Company of ShandongShandongChina
  10. 10.Hunan Cotton Research InstituteChangdeChina
  11. 11.Sanyi Seed Industry of Changde in Hunan IncChangdeChina

Personalised recommendations