Molecular Genetics and Genomics

, Volume 292, Issue 5, pp 1051–1067 | Cite as

The landscape and structural diversity of LTR retrotransposons in Musa genome

  • Faisal NourozEmail author
  • Shumaila Noreen
  • Habib Ahmad
  • J. S. Pat Heslop-Harrison
Original Article


Long terminal repeat retrotransposons represent a major component of plant genomes and act as drivers of genome evolution and diversity. Musa is an important fruit crop and also used as a starchy vegetable in many countries. BAC sequence analysis by dot plot was employed to investigate the LTR retrotransposons from Musa genomes. Fifty intact LTR retrotransposons from selected Musa BACs were identified by dot plot analysis and further BLASTN searches retrieved 153 intact copies, 61 truncated, and a great number of partial copies/remnants from GenBank database. LARD-like elements were also identified with several copies dispersed among the Musa genotypes. The predominant elements were the LTR retrotransposons Copia and Gypsy, while Caulimoviridae (pararetrovirus) were rare in the Musa genome. PCR amplification of reverse transcriptase (RT) sequences revealed their abundance in almost all tested Musa accessions and their ancient nature before the divergence of Musa species. The phylogenetic analysis based on RT sequences of Musa and other retrotransposons clustered them into Gypsy, Caulimoviridae, and Copia lineages. Most of the Musa-related elements clustered in their respective groups, while some grouped with other elements indicating homologous sequences. The present work will be helpful to understand the LTR retrotransposons landscape, giving a complete picture of the nature of the elements, their structural features, annotation, and evolutionary dynamics in the Musa genome.


Musa Retrotransposons Copia Gypsy Biodiversity Phylogeny Genomics Evolution 



The study was funded by Post quake Faculty Development Plan of Hazara University and Higher Education Commission of Pakistan. We are thankful to staff at University of Leicester, UK, who provided us technical assistance and all laboratory facilities during this work. The collection of 48 Musa genomic DNA was a gift from Professor Ashalatha (Asha) Nair, University of Kerala, India.

Compliance with ethical standards

Conflict of interest

All the authors declare no financial or other conflict of interest in publishing the manuscript.

Supplementary material

438_2017_1333_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Alix K, Heslop-Harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54:895–909. doi: 10.1111/j.1365-313X.2008.03660.x CrossRefPubMedGoogle Scholar
  2. Alsayied N, Fernández JA, Schwarzacher T, Heslop-Harrison JS (2015) Diversity and relationships of Crocus sativus and its relatives analysed by Inter Retroelement Amplified Polymorphism (IRAP). Ann Bot 116(3):359–368CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269. doi: 10.1146/annurev-arplant-050213-035811 CrossRefPubMedGoogle Scholar
  4. Beulé T, Agbessi M, Dussert S, Jaligot E, Guyot R (2015) Genome-wide analysis of LTR-retrotransposons in oil palm. BMC Genom 16:795. doi: 10.1186/s12864-015-2023-1 CrossRefGoogle Scholar
  5. Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420CrossRefPubMedGoogle Scholar
  6. Bousalem M, Douzery EJ, Seal SE (2008) Taxonomy, molecular phylogeny and evolution of plant reverse transcribing viruses (family Caulimoviridae) inferred from full-length genome and reverse transcriptase sequences. Arch Virol 153:1085–1102CrossRefPubMedGoogle Scholar
  7. Capy P (2005) Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 110:457–461. doi: 10.1159/000084978 CrossRefPubMedGoogle Scholar
  8. Cheung F, Town CD (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biol 7:29. doi: 10.1186/1471-2229-7-29 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genom 14:683. doi: 10.1186/1471-2164-14-683 CrossRefGoogle Scholar
  10. Defraia C, Slotkin RK (2014) Analysis of retrotransposon activity in plants. Methods Mol Biol 1112:195–210. doi: 10.1007/978-1-62703-773-0_13 CrossRefPubMedGoogle Scholar
  11. Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079. doi: 10.1101/gr.132102 CrossRefPubMedPubMedCentralGoogle Scholar
  12. D’Hont A, Denoeud F, Aury J, Baurens F, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard MCDS et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–219. doi: 10.1038/nature11241 CrossRefPubMedGoogle Scholar
  13. Docking TR, Saade FE, Elliot MC, Shoen DJ (2006) Retrotransposon sequence variation in four asexual plant species. J Mol Evol 62:375–387. doi: 10.1007/s00239-004-0350-y CrossRefPubMedGoogle Scholar
  14. Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTR-Retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598. doi: 10.1111/j.1365-313X.2010.04263.x CrossRefPubMedGoogle Scholar
  15. Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134:221–234. doi: 10.1016/j.virusres.2007.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Häkkinen M (2013) Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 62(4):809–813CrossRefGoogle Scholar
  17. Hansen CN, Heslop-Harrison JS (2004) Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Adv Bot Res 41:165–193CrossRefGoogle Scholar
  18. Hansen CN, Harper G, Heslop-Harrison JS (2005) Characterisation of pararetrovirus-like sequences in the genome of potato (Solanum tuberosum). Cytogenet Genome Res 110:559–565. doi: 10.1159/000084989 CrossRefPubMedGoogle Scholar
  19. Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225. doi: 10.1186/gb-2004-5-6-225 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heslop-Harrison JS (2011) Genomics, banana breeding and superdomestication. In: Proceedings of the international ISHS-Pro Musa symposium on global perspectives on Asian challenges. Acta Hortic 897:55–62. doi: 10.17660/ActaHortic.2011.897.4
  21. Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084. doi: 10.1093/aob/mcm191 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hippolyte I, Jenny C, Gardes L, Bakry F, Riyallan R, Pomies V, Cubry P, Tomekpe K, Risteruci AM, Roux N et al (2012) Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot 109:937–951. doi: 10.1093/aob/mcs010 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hribova E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204. doi: 10.1186/1471-2229-10-204 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefPubMedGoogle Scholar
  25. Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP et al (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74. doi: 10.1093/nar/gkq1061 CrossRefPubMedGoogle Scholar
  26. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869. doi: 10.1101/gr.1466204 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoerme M, Heslop-Harrison JS, Schmidt T (2015) The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 22:559–571. doi: 10.1007/s10577-014-9445-5 CrossRefGoogle Scholar
  28. Nouroz F (2015) Large retrotransposon derivatives (LARDs) and terminal repeat retrotransposons in miniature (TRIMs) in Brassica genomes. Int J Agric Appl Sci 7:59–66Google Scholar
  29. Nouroz F, Noreen S, Heslop-Harrison JS (2015) Identification and characterization of LTR Retrotransposons in Brassica. Turk J Biol 39:740–757. doi: 10.3906/biy-1501-77 CrossRefGoogle Scholar
  30. Nouroz F, Noreen S, Heslop-Harrison JS (2016) Characterization and diversity of novel PIF/Harbinger DNA transposons in Brassica genomes. Pak J Bot 48(1):167–178Google Scholar
  31. Nouroz F, Noreen S, Heslop-Harrison JS (2017) Identification and evolutionary dynamics of CACTA DNA transposons in Brassica. Pak J Bot 49(2):789–798Google Scholar
  32. Pollefeys P, Sharrock S, Arnaud E (2004) Preliminary analysis of the literature on the distribution of wild Musa species using MGIS and DIVA-GIS. INIBAP, MontpellierGoogle Scholar
  33. Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genom 271:91–97. doi: 10.1007/s00438-003-0960-x CrossRefGoogle Scholar
  34. Schulman AH, Flavell AJ, Paux E, Ellis TH (2012) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 859:115–153. doi: 10.1007/978-1-61779-603-6_7 CrossRefPubMedGoogle Scholar
  35. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tomlinson P (1969) Anatomy of the monocotyledons. III. Commelinales-Zingiberales. Clarendon Press, Oxford, p 1969Google Scholar
  37. Wang H, Liu JS (2008) LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genom 9:382. doi: 10.1186/1471-2164-9-382 CrossRefGoogle Scholar
  38. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavel A, Leroy P, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi: 10.1038/nrg2165 CrossRefPubMedGoogle Scholar
  39. Zhang L, Yan L, Jiang J, Wang Y, Jiang Y, Yan T, Cao Y (2014) The structure and retrotransposition mechanism of LTR retrotransposons in the asexual yeast Candida albicans. Virulence 5:655–664. doi: 10.4161/viru.32180 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Faisal Nouroz
    • 1
    • 2
    Email author
  • Shumaila Noreen
    • 3
  • Habib Ahmad
    • 4
  • J. S. Pat Heslop-Harrison
    • 1
  1. 1.Molecular Cytogenetics Laboratory, Department of BiologyUniversity of LeicesterLeicesterUK
  2. 2.Bioinformatics Laboratory, Department of BotanyHazara UniversityMansehraPakistan
  3. 3.Molecular Genetics Laboratory, Department of GeneticsUniversity of LeicesterLeicesterUK
  4. 4.Genetics Laboratory, Department of GeneticsHazara UniversityMansehraPakistan

Personalised recommendations