Advertisement

Molecular Genetics and Genomics

, Volume 292, Issue 4, pp 823–831 | Cite as

Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1

  • Sanyuan Ma
  • Xiaojuan Xia
  • Yufeng Li
  • Le Sun
  • Yue Liu
  • Yuanyuan Liu
  • Xiaogang Wang
  • Run Shi
  • Jiasong Chang
  • Ping Zhao
  • Qingyou XiaEmail author
Original Article
  • 533 Downloads

Abstract

Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.

Keywords

Bioreactor Sericin-1 expression system MSG Knock down Transgenic silkworm 

Notes

Compliance with ethical standards

Funding

This study was funded by Grants from the National Natural Science Foundation of China (No. 31530071), and the Chongqing Postdoctoral Science Foundation (Xm2015024).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M (2010) Production of a non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng 106:860–870CrossRefPubMedGoogle Scholar
  2. Hino R, Tomita M, Yoshizato K (2006) The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials 27:5715–5724CrossRefPubMedGoogle Scholar
  3. Huang TK, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45:168–184CrossRefGoogle Scholar
  4. Iizuka M, Tomita M, Shimizu K, Kikuchi Y, Yoshizato K (2008) Translational enhancement of recombinant protein synthesis in transgenic silkworms by a 5′-untranslated region of polyhedrin gene of Bombyx mori nucleopolyhedrovirus. J Biosci Bioeng 105:595–603CrossRefPubMedGoogle Scholar
  5. Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J, Tomita M (2009) Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–5820CrossRefPubMedGoogle Scholar
  6. Jiang L, Zhao P, Wang G, Cheng T, Yang Q, Jin S, Lin P, Xiao Y, Sun Q, Xia Q (2013) Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm, Bombyx mori. Antiviral Res 97:255–263CrossRefPubMedGoogle Scholar
  7. Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470CrossRefPubMedGoogle Scholar
  8. Kurihara H, Sezutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355:976–980CrossRefPubMedGoogle Scholar
  9. Lin P, Cheng T, Jin S, Wu Y, Fu B, Long R, Zhao P, Xia Q (2015) PC, a novel oral insecticidal toxin from Bacillus bombysepticus involved in host lethality via APN and BtR-175. Sci Rep 5:11101CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ma S, Xu H, Duan J, Zhao A, Zhang M, Xia Q (2009) Effect of several factors on the transformation efficiency in the transgenic technology of silkworm, Bombyx mori. Acta Entomol Sin 52:595–603 (in Chinese) Google Scholar
  11. Ma S, Zhang S, Wang F, Liu Y, Liu Y, Xu H, Liu C, Lin Y, Zhao P, Xia Q (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One 7:e45035CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ma S, Wang X, Fei J, Liu Y, Duan J, Wang F, Xu H, Zhao P, Xia Q (2013) Genetic marking of sex using a W chromosome-linked transgene. Insect Biochem Mol Biol 43:1079–1086CrossRefPubMedGoogle Scholar
  13. Ma S, Chang J, Wang X, Liu Y, Zhang J, Lu W, Gao J, Shi R, Zhao P, Xia Q (2014a) CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 4:4489CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ma S, Shi R, Wang X, Liu Y, Chang J, Gao J, Lu W, Zhang J, Zhao P, Xia Q (2014b) Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Sci Rep 4:6867CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ Jr, Jarvis DL (2015) Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. Insect Biochem Mol Biol 65:20–27CrossRefPubMedPubMedCentralGoogle Scholar
  16. Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315:592–594CrossRefPubMedGoogle Scholar
  17. Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544CrossRefPubMedGoogle Scholar
  18. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183CrossRefPubMedPubMedCentralGoogle Scholar
  19. Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Res 14:463–472CrossRefPubMedGoogle Scholar
  20. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84CrossRefPubMedGoogle Scholar
  21. Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19:473–487CrossRefPubMedGoogle Scholar
  22. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245CrossRefPubMedGoogle Scholar
  23. Teulé F, Miao YG, Sohn BH, Kim YS, Hull JJ, Fraser MJ Jr, Lewis RV, Jarvis DL (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA 109:923–928CrossRefPubMedPubMedCentralGoogle Scholar
  24. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32:247–253CrossRefPubMedGoogle Scholar
  25. Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33:645–654CrossRefPubMedGoogle Scholar
  26. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56CrossRefPubMedGoogle Scholar
  27. Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465CrossRefPubMedGoogle Scholar
  28. Tremblay R, Diao H, Hüner N, Jevnikar AM, Ma S (2011) The development of a high-yield recombinant protein bioreactor through RNAi induced knockdown of ATP/ADP transporter in Solanum tuberosum. J Biotechnol 156:59–66CrossRefPubMedGoogle Scholar
  29. Voegeli R, Meier J, Blust R (1993) Sericin silk protein: unique structure and properties. Cosmet Toiletries 108:101–108Google Scholar
  30. Wang F, Xu H, Yuan L, Ma S, Wang Y, Duan X, Duan J, Xiang Z, Xia Q (2013) An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Res 22:925–938CrossRefPubMedGoogle Scholar
  31. Wang F, Wang R, Wang Y, Xu H, Yuan L, Ding H, Ma S, Zhou Y, Zhao P, Xia Q (2015a) Remobilizing deleted piggyBac vector post-integration for transgene stability in silkworm. Mol Genet Genomics 290:1181–1189CrossRefPubMedGoogle Scholar
  32. Wang F, Wang R, Wang Y, Zhao P, Xia Q (2015b) Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci Rep 5:16323CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wen H, Lan X, Zhang Y, Zhao T, Wang Y, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37:1815–1821CrossRefPubMedGoogle Scholar
  34. Xia Q, Li S, Feng Q (2014) Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu Rev Entomol 59:513–536CrossRefPubMedGoogle Scholar
  35. Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2010) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19:29–44CrossRefPubMedGoogle Scholar
  36. Zhu Z, Kikuchi Y, Kojima K, Tamura T, Kuwabara N, Nakamura T, Asakura T (2010) Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. J Biomater Sci Polym Ed 21:395–411CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sanyuan Ma
    • 1
    • 2
  • Xiaojuan Xia
    • 1
  • Yufeng Li
    • 1
  • Le Sun
    • 1
  • Yue Liu
    • 1
  • Yuanyuan Liu
    • 1
  • Xiaogang Wang
    • 1
  • Run Shi
    • 1
  • Jiasong Chang
    • 1
  • Ping Zhao
    • 1
    • 2
  • Qingyou Xia
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingPeople’s Republic of China
  2. 2.Chongqing Engineering and Technology Research Center for Novel Silk MaterialsSouthwest UniversityChongqingChina

Personalised recommendations