Molecular Genetics and Genomics

, Volume 292, Issue 2, pp 297–305 | Cite as

Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue

  • Taylor Gonchoroski
  • Veridiana G. Virginio
  • Claudia E. Thompson
  • Jéssica A. Paes
  • Cláudio X. Machado
  • Henrique B. FerreiraEmail author
Original Article


The minimal genome of the mollicute Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia, encodes a limited repertoire of antioxidant enzymes that include a single and atypical peroxiredoxin (MhPrx), whose evolution and function were studied here. MhPrx has only one catalytic cysteine, in contrast with some of its possible ancestors (2-Cys peroxiredoxins), which have two. Although it is more similar to 2-Cys orthologs, MhPrx can still function with a single peroxidatic cysteine (CysP), using non-thiolic electron donors to reduce it. Therefore, MhPrx could be a representative of a possible group of 2-Cys peroxiredoxins, which have lost the resolving cysteine (CysR) residue without losing their catalytic properties. To further investigate MhPrx evolution, we performed a comprehensive phylogenetic analysis in the context of several bacterial families, including Prxs belonging to Tpx and AhpE families, shedding light on the evolutionary history of Mycoplasmataceae Prxs and giving support to the hypothesis of a relatively recent loss of the CysR within this family. Moreover, mutational analyses provided insights into MhPrx function with one, two, or without catalytic cysteines. While removal of the MhPrx putative CysP caused complete activity loss, confirming its catalytic role, the introduction of a second cysteine in a site correspondent to that of the CysR of a 2-Cys orthologue, as in the MhPrx supposed ancestral form, was compatible with enzyme activity. Overall, our phylogenetic and mutational studies support that MhPrx recently diverged from a 2-Cys Prx ancestor and pave the way for future studies addressing structural, functional, and evolutive aspects of peroxiredoxin subfamilies in Mollicutes and other bacteria.


Mycoplasma Peroxiredoxin Tpx AhpE Molecular evolution 



This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). T. G. was a recipient of a CNPq PIBITI fellowship. C. E. T. is recipient of a CAPES post-doctoral fellowship. V. G. V. was a recipient of a CAPES post-doctoral fellowship. C. X. M. was a recipient of a CAPES M.Sc. fellowship. J. A. P. is a recipient of a CAPES Ph.D. fellowship. We also thank T. Reinaldo, for the help with the design of megaprimers, and Dr. D. Maturana, for the help with thermophoretic dimerization assays.

Supplementary material

438_2016_1272_MOESM1_ESM.tif (14.8 mb)
Supplementary material 1 Fig. S1 Bacterial Prx evolutionary tree obtained using bayesian inference implemented by the MrBayes software. The posterior probabilities higher or equal to 0.7 are shown. The conserved cysteine residue for each bacterial family is indicated below the family label. Additional cysteine residues found in specific Prx sequences are indicated after the species name. The list of organisms from which Prxs sequences was taken for the global alignments (Fig. S2), their corresponding sequence accession numbers, and cysteine positions are in Supplementary Table S1 (TIFF 15168 kb)
438_2016_1272_MOESM2_ESM.tif (9.3 mb)
Supplementary material 2 Fig. S2 Multiple alignment of all Prx sequences used for the construction of the phylogenetic tree shown in Supplementary Fig. S1. The positions of all cysteines can be found in Table S1 (TIFF 9573 kb)
438_2016_1272_MOESM3_ESM.docx (58 kb)
Supplementary material 3 (DOCX 58 kb)


  1. Abascal F, Zardoya R et al (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105. doi: 10.1093/bioinformatics/bti263 PubMedCrossRefGoogle Scholar
  2. Angelaccio S, Bonaccorsi di Patti MC (2002) Site-directed mutagenesis by the megaprimer PCR method: variations on a theme for simultaneous introduction of multiple mutations. Anal Biochem 306(2):346–349PubMedCrossRefGoogle Scholar
  3. Bai F, Ni B et al (2013) Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation. Vet Immunol Immunopathol 155(3):155–161. doi: 10.1016/j.vetimm.2013.07.004 PubMedCrossRefGoogle Scholar
  4. Cao Z, Tavender TJ et al (2011) Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. J Biol Chem 286(49):42257–42266. doi: 10.1074/jbc.M111.298810 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Drozdetskiy A, Cole C et al (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394PubMedPubMedCentralCrossRefGoogle Scholar
  6. du Manoir JM, Albright BN et al (2002) Variability of neutrophil and pulmonary alveolar macrophage function in swine. Vet Immunol Immunopathol 89(3–4):175–186PubMedCrossRefGoogle Scholar
  7. Dubbs JM, Mongkolsuk S (2007) Peroxiredoxins in bacterial antioxidant defense. Subcell Biochem 44:143–193PubMedCrossRefGoogle Scholar
  8. Hall A, Karplus PA et al (2009a) Typical 2-Cys peroxiredoxins—structures, mechanisms and functions. FEBS J 276(9):2469–2477. doi: 10.1111/j.1742-4658.2009.06985.x PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hall A, Sankaran B et al (2009b) Structural changes common to catalysis in the Tpx peroxiredoxin subfamily. J Mol Biol 393(4):867–881. doi: 10.1016/j.jmb.2009.08.040 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hall A, Nelson K et al (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 15(3):795–815. doi: 10.1089/ars.2010.3624 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hames C, Halbedel S et al (2009) Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol 191(3):747–753. doi: 10.1128/JB.01103-08 PubMedCrossRefGoogle Scholar
  12. Jerabek-Willemsen M, Wienken CJ et al (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9(4):342–353. doi: 10.1089/adt.2011.0380 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Karplus PA (2015) A primer on peroxiredoxin biochemistry. Free Radic Biol Med 80:183–190. doi: 10.1016/j.freeradbiomed.2014.10.009 PubMedCrossRefGoogle Scholar
  14. König J, Galliardt H et al (2013) The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J Exp Bot 64(11):3483–3497. doi: 10.1093/jxb/ert184 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102(30):10557–10562. doi: 10.1073/pnas.0409137102 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Machado CX, Pinto PM et al (2009) A peroxiredoxin from Mycoplasma hyopneumoniae with a possible role in H2O2 detoxification. Microbiology 155(Pt 10):3411–3419. doi: 10.1099/mic.0.030643-0 PubMedCrossRefGoogle Scholar
  17. Nelson KJ, Knutson ST et al (2011) Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79(3):947–964. doi: 10.1002/prot.22936 PubMedCrossRefGoogle Scholar
  18. Noguera-Mazon V, Krimm I et al (2006) Protein-protein interactions within peroxiredoxin systems. Photosynth Res 89(2–3):277–290. doi: 10.1007/s11120-006-9106-4 PubMedCrossRefGoogle Scholar
  19. Park J, Lee S et al (2014) 2-cys peroxiredoxins: emerging hubs determining redox dependency of mammalian signaling networks. Int J Cell Biol 2014:715867. doi: 10.1155/2014/715867 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Parrish JR, Limjindaporn T et al (2004) High-throughput cloning of Campylobacter jejuni ORfs by in vivo recombination in Escherichia coli. J Proteome Res 3(3):582–586PubMedCrossRefGoogle Scholar
  21. Perkins A, Nelson KJ et al (2013) The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 52(48):8708–8721. doi: 10.1021/bi4011573 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Perkins A, Nelson KJ et al (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. doi: 10.1016/j.tibs.2015.05.001 PubMedPubMedCentralGoogle Scholar
  23. Poole LB and Nelson KJ (2016) Distribution and Features of the Six Classes of Peroxiredoxins. Mol Cells 39(1):53–59PubMedPubMedCentralCrossRefGoogle Scholar
  24. Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid Redox Signal 15(3):781–794. doi: 10.1089/ars.2010.3393 PubMedCrossRefGoogle Scholar
  25. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574PubMedCrossRefGoogle Scholar
  26. Schafer ER, Oneal MJ et al (2007) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to hydrogen peroxide. Microbiology 153(Pt 11):3785–3790. doi: 10.1099/mic.0.2007/011387-0 PubMedCrossRefGoogle Scholar
  27. Schneider CA, Rasband WS et al (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675PubMedCrossRefGoogle Scholar
  28. Seidel SA, Dijkman PM et al (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59(3):301–315. doi: 10.1016/j.ymeth.2012.12.005 PubMedCrossRefGoogle Scholar
  29. Siqueira FM, Thompson CE et al (2013) New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis. BMC Genom 14:175. doi: 10.1186/1471-2164-14-175 CrossRefGoogle Scholar
  30. Stehr M, Hecht HJ et al (2006) Structure of the inactive variant C60S of Mycobacterium tuberculosis thiol peroxidase. Acta Crystallogr D Biol Crystallogr 62(Pt 5):563–567. doi: 10.1107/S0907444906008249 PubMedCrossRefGoogle Scholar
  31. Tsoy O, Yurieva M et al (2013) Minimal genome encoding proteins with constrained amino acid repertoire. Nucleic Acids Res 41(18):8444–8451. doi: 10.1093/nar/gkt610 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Vasconcelos AT, Ferreira HB et al (2005) Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol 187(16):5568–5577. doi: 10.1128/JB.187.16.5568-5577.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699PubMedCrossRefGoogle Scholar
  34. Wood ZA, Schröder E et al (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Taylor Gonchoroski
    • 1
    • 5
  • Veridiana G. Virginio
    • 1
  • Claudia E. Thompson
    • 2
  • Jéssica A. Paes
    • 1
    • 3
  • Cláudio X. Machado
    • 1
    • 3
    • 6
  • Henrique B. Ferreira
    • 1
    • 3
    • 4
    Email author
  1. 1.Laboratório de Genômica Estrutural e Funcional, Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Unidade de Biologia Teórica e Computacional, Centro de BiotecnologiaUFRGSPorto AlegreBrazil
  3. 3.Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de BiotecnologiaUFRGSPorto AlegreBrazil
  4. 4.Departamento de Biologia Molecular e Biotecnologia, Instituto de BiociênciasUFRGSPorto AlegreBrazil
  5. 5.Grupo de Pesquisa em Plasticidade Neuroglial, Departamento de BioquímicaUFRGSPorto AlegreBrazil
  6. 6.Departamento de CriminalísticaInstituto Geral de Perícias do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations