Molecular Genetics and Genomics

, Volume 291, Issue 4, pp 1625–1638 | Cite as

Detection and validation of one stable fiber strength QTL on c9 in tetraploid cotton

  • X. Yang
  • Y. Wang
  • G. Zhang
  • X. Wang
  • L. Wu
  • H. Ke
  • H. Liu
  • Z. MaEmail author
Original Article


Fiber strength is an essential trait of fiber property in cotton, and it is quantitatively inherited. Identification of stable quantitative trait loci (QTL) contributing to fiber strength would provide the key basis for marker-assisted selection (MAS) in cotton breeding. In this study, four interspecific hybridization populations were established with a common G. barbadense parent Pima 90-53 and two G. hirsutum parents (CCRI 8 and Handan 208), each of which had fiber strength characteristic. Based on the phenotypic data of fiber strength from seven environments, a stable QTL, qFS-c9-1, was detected and validated on c9 in a marker interval between SSR markers NAU2395 and NAU1092. The QTL explaining 14.4–17.9 % of the phenotypic variation was firstly detected in two populations (CCRI 8 × Pima 90-53, BC1F1 and BC1F2) and its derived lines in four environments. And it accounting for 12.1–14.8 % of the phenotypic variation was further confirmed in two populations (Handan 208 × Pima 90-53, BC1F1, and F2) under one environment. In silico mapping using three sequenced cotton genomes indicated that homologous genes, anchored by NAU2395 and NAU1092, were aligned to the G. arboreum genome within a physical distance between 81.10 Mbps and 87.07 Mbps. In that interval, several genes were confirmed in literatures to associate with fiber development. Among these genes, seven genes were further selected for an expression analysis through fiber development transcriptome database, revealing unique expression patterns across different stages of fiber development between CCRI 8 and Pima 90-53. The genes underlying qFS-c9-1 were favorable to fine mapping and cloning. The current study results provided valuable evidence for mapping stable QTL of fiber strength utilizing multiple populations and environments, as well as map-based cloning the candidate gene underlying the QTL for future prospective research directions.


Cotton Fiber strength Simple sequence repeat (SSR) QTL 



This study was funded by the National High Technology Research and Development Program of China (Grant Number 2012AA101108-02) and a project from Ministry of Agriculture of China for Transgenic Research (Grant Number 2014ZX08009-003).

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Supplementary material

438_2016_1206_MOESM1_ESM.docx (401 kb)
Supplementary material 1 (DOCX 401 kb)
438_2016_1206_MOESM2_ESM.xlsx (13 kb)
Supplementary material 2 (XLSX 13 kb)
438_2016_1206_MOESM3_ESM.xlsx (45 kb)
Supplementary material 3 (XLSX 44 kb)
438_2016_1206_MOESM4_ESM.xlsx (17 kb)
Supplementary material 4 (XLSX 17 kb)


  1. Benedict CR, Kohel RJ, Lewis HL (1999) Cotton fiber quality. In: Smith WC (ed) Cotton: origin, history, technology, and production. Wiley, New York, pp 269–288Google Scholar
  2. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  3. Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7:1–16CrossRefGoogle Scholar
  4. Brubaker CL, Bourland FM, Wendel JF (1999a) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) cotton. Wiley, New York, pp 3–31Google Scholar
  5. Brubaker CL, Paterson AH, Wendel JF (1999b) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  6. Cai CP (2009) Construction and application of inter- and intra-specific saturated genetic map in tetraploid cotton. A dissertation, Nanjing Agricultural University, pp 98–116Google Scholar
  7. Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763   CrossRefPubMedGoogle Scholar
  8. Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781  CrossRefPubMedGoogle Scholar
  9. Chen H, Qian N, Guo WZ, Song QP, Li BC, Deng FJ, Dong CG, Zhang TZ (2009) Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro. D8 in Upland cotton. Theor Appl Genet 119:605–612CrossRefPubMedGoogle Scholar
  10. Deussen H (1992) Improved cotton fiber properties: the textile industry’s key to success in global competition. In: Proc cotton fiber cellulose: structure, function and utilization conference. Memphis, National Cotton Council of America, Tennessee, pp 43–44Google Scholar
  11. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433CrossRefPubMedGoogle Scholar
  12. Edwards MD, Stuber CW, Wendenl JF (1987) Molecular-marker-facilitated investigations of quantitative-trait Loci in Maize. I. numbers, genomic distribution and types of gene action. Genetics 116:113–125PubMedPubMedCentralGoogle Scholar
  13. Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, Zhang TZ (2008) A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom 9:314 CrossRefGoogle Scholar
  14. He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2006) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197CrossRefGoogle Scholar
  15. Ho MH, Saha S, Jenkins JN, Ma DP (2010) Characterization and promoter analysis of a cotton RING-type ubiquitin ligase (E3) gene. Mol Biotechnol 46(2):140–148CrossRefPubMedGoogle Scholar
  16. Huang QS, Wang HY, Gao P, Wang GY, Xia GX (2008) Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 27(12):1869–1875CrossRefPubMedGoogle Scholar
  17. Jiang CX, Wright RJ, Et-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424CrossRefPubMedPubMedCentralGoogle Scholar
  18. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25(1):192–194CrossRefGoogle Scholar
  19. Kohel RJ, Yu J, Park Y-H, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172CrossRefGoogle Scholar
  20. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  21. Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple G. hirsutum × G. barbadense backcross generations. Crop Sci 45:123–140CrossRefGoogle Scholar
  22. Lacape J, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palai O, Georges S, Giband M, de Assuncao H, Augusto P, Barroso V, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  24. Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi CC, Xiao GH, Gou CY, Ye WW, Xu X, Zhang XY, Wei HL, Li ZF, Zhang GY, Wang JY, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefPubMedGoogle Scholar
  25. Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wang JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, John ZY, Zhu YX, Yu SX (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Genet 33:524–530Google Scholar
  26. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JM (2005) Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed 124:180–187CrossRefGoogle Scholar
  27. Liu S, Saha S, Stelly DM, Burr B, Cantrell G (2000) Chromosomal assignment of microsatellite loci in cotton. J Hered 91:326–332CrossRefPubMedGoogle Scholar
  28. Liu HW, Wang XF, Pan YX, Shi RF, Zhang GY, Ma ZY (2009) Mining cotton fiber strength candidate genes based on transcriptome mapping. Chinese Sci Bull 54:4651–4657Google Scholar
  29. Matthew KG, John MB, Jay MS, Cao HP, Doug JH, Fang DD, Marina N (2013) A Transcript Profiling Approach Reveals an Abscisic Acid-Specific Glycosyltransferase (UGT73C14) Induced in Developing Fiber of Ligon lintless- 2 Mutant of Cotton (Gossypium hirsutum L.). PLoS One 8(9):e75268CrossRefGoogle Scholar
  30. May OL (1999) Genetic variation for fiber quality. In: Basra AS (ed) Cotton fibers—developmental biology, quality improvement, and textile processing. Food Products Press, New York, pp 183–229Google Scholar
  31. McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Gene Newslett 14:11–13Google Scholar
  32. Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber related traits in cotton (Gossypium). Theor Appl Genet 108:280–291CrossRefPubMedGoogle Scholar
  33. Meredith WR (1977) Backcross breeding to increase fiber strength of cotton. Crop Sci 17:172–175CrossRefGoogle Scholar
  34. Meredith WR (1992) Improving fiber strength through genetics and breeding. In: Benedict CR, Jividen GM (eds) Cellulose structure, function and utilization conference, Savannah, GA. Natl. Cotton Council of America, Memphis, TN, pp 289–302Google Scholar
  35. Meredith WR (2005) Minimum number of genes controlling cotton fiber strength in a backcross population. Crop Sci 45:1114–1119   CrossRefGoogle Scholar
  36. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  37. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175CrossRefPubMedGoogle Scholar
  38. Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype environment interaction affecting cotton fiber quality. Theor Appl Genet 106:384–396PubMedGoogle Scholar
  39. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205CrossRefPubMedPubMedCentralGoogle Scholar
  40. Percival AE, Wendel JF, Stemart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. Wiley, New York, pp 33–63Google Scholar
  41. Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18(1):111–119CrossRefPubMedGoogle Scholar
  42. Richmond TR (1951) Procedures and methods of cotton breeding with special reference to American cultivated species. In: Demareo M (ed) Advances in genetics, vol 4. Academic Press Inc. Publications, New York, pp 213–245Google Scholar
  43. Rong JK, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao XP, Zhu LH, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rong J, Feltus EA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkims TA, May OL, Smith CW, Gannaway JR, Wendel JR, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene cluster implicated in lint fiber development. Genetics 176:2577–2588CrossRefPubMedPubMedCentralGoogle Scholar
  45. Saha S, Wu J, Jenkins JN, McCarty JC, Gutierrez JR, Stelly DM, Percy RG, Raska DA (2004) Effect of Chromosome Substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on Agronomic and Fiber Traits. J Cotton Sci 8:162–169Google Scholar
  46. Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:776CrossRefGoogle Scholar
  47. Said JI, Song MZ, Wang HT, Lin ZX, Zhang XL, Fang DD, Zhang JF (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 290:1003–1025CrossRefPubMedGoogle Scholar
  48. SAS Institute Inc (2008) SAS 9.2 enhanced logging facilities. SAS Inst., CaryGoogle Scholar
  49. Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380CrossRefGoogle Scholar
  50. Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY, Li JW, Gong JW, Shang HH, Yuan YL (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breeding 30:569–582CrossRefGoogle Scholar
  52. Tanksley SD, Hewitt J (1988) Use of molecular markers in breeding for soluble solids content in tomato: a re-examination. Theor Appl Genet 75:811–823CrossRefGoogle Scholar
  53. Voorrips RE (2006) MapChart 2.2: Software for the graphical presentation of linkage maps and QTL. Plant Research International, WageningenGoogle Scholar
  54. Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA, Goynes WR, Edwards JV, Hunter L, McAlister DD, Gamble GR (2006) International Fiber Science and Technology: Cotton Fiber Chemistry and Technology, CRC Press. Taylor & Francis Group, LLCrossRefGoogle Scholar
  55. Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, Pan JJ, Kohel RJ, Zhang TZ (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80CrossRefPubMedGoogle Scholar
  56. Wang LK, Niu XW, Lv YH, Zhang TZ, Guo WZ (2010) Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development. Mol Biol Rep 37(7):3327–3334CrossRefPubMedGoogle Scholar
  57. Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NCGoogle Scholar
  58. Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhang XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefPubMedGoogle Scholar
  59. Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T (2012b) Inheritance of long stable fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 124:1415–1428CrossRefPubMedGoogle Scholar
  60. Wang FR, Xu ZZ, Sun R, Gong YC, Liu GD, Zhang JX, Wang LM, Zhang CY, Fan SJ, Zhang J (2013) Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breed 32:547–562CrossRefGoogle Scholar
  61. Yang XL, Zhou XD, Wang XF, Li ZK, Zhang Y, Liu HW, Wu LQ, Zhang GY, Yan GJ, Ma ZY (2015) Mapping QTL for cotton fiber quality traits using simple sequence repeat markers, conserved intron-scanning primers, and transcript-derived fragments. Euphytica 201(2):215–230CrossRefGoogle Scholar
  62. Yu ZH, Park YH, Lazo GR, Kohel RJ (1998) Molecular mapping of the cotton genome: QTL analysis of fiber quality properties. p 485. In: Dugger P, Richter DA (eds) Proc Belt. Cot. Prod. Conf., San Diego, CA. 5–9 Jan. 1998. Natl. Cotton Council, Memphis, TNGoogle Scholar
  63. Yu JW, Yu SX, Lu CR, Wang W, Fan SL, Song MZ, Lin ZX, Zhang XL, Zhang JF (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724CrossRefGoogle Scholar
  64. Yu JW, Yu S, Gore M, Wu M, Zhai H, Li X, Fan S, Song M, Zhang JF (2013a) Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191:375–389CrossRefGoogle Scholar
  65. Yu JW, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang JF (2013b) Mapping quantitative trait loci for lint yield and fiber quality across environments in Gossypium hirsutum x Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287CrossRefPubMedGoogle Scholar
  66. Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX, Zhang XL (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genom 12:15CrossRefGoogle Scholar
  67. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  68. Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201Google Scholar
  69. Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174CrossRefPubMedGoogle Scholar
  70. Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268PubMedGoogle Scholar
  71. Zhang YX, Lin ZX, Xia QZ, Zhang MJ, Zhang XL (2008) Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51:534–546CrossRefPubMedGoogle Scholar
  72. Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61CrossRefGoogle Scholar
  73. Zhang JF, Percy RG, McCarty JC Jr (2014) Introgression genetics and breeding between Upland and Pima cotton- a review. Euphytica 198:1–12CrossRefGoogle Scholar
  74. Zhao L, Lv YD, Cai CP, Tong XC, Chen XD, Zhang W, Du H, Guo XH, Guo WZ (2013) Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genom 13:539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • X. Yang
    • 1
  • Y. Wang
    • 1
  • G. Zhang
    • 1
  • X. Wang
    • 1
  • L. Wu
    • 1
  • H. Ke
    • 1
  • H. Liu
    • 1
  • Z. Ma
    • 1
    Email author
  1. 1.North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingPeople’s Republic of China

Personalised recommendations