Molecular Genetics and Genomics

, Volume 291, Issue 4, pp 1607–1613 | Cite as

The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization

  • Danilo Bueno
  • Octavio Manuel Palacios-Gimenez
  • Dardo Andrea Martí
  • Tatiane Casagrande Mariguela
  • Diogo Cavalcanti Cabral-de-Mello
Original Article


The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.


FISH Genome Multigene family Non-transcribed spacer Repetitive DNAs 



The authors are grateful to the “Parque Estadual Edmundo Navarro de Andrade” administration for sample collecting authorization and to the two anonymous reviewers for valuable suggestions. This study was partially supported by the Fundação de Amparo a Pesquisa do Estado de São Paulo-FAPESP (process numbers 2011/19481-3 and 2014/11763-8) and Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior-CAPES. DB and OMPG acknowledge the scholarships obtained from FAPESP (process numbers 2011/18028-3 and 2014/02038-8, respectively). DAM was supported by Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET from Argentina. DCCM was the recipient of a research productivity fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (process number 304758/2014-0).

Compliance with ethical standards


This study was founded by Fundação de Amparo a Pesquisa do Estado de São Paulo-FAPESP (process numbers 2011/19481-3 and 2014/11763-8) and Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior-CAPES.

Conflict of interest

Danilo Bueno declares that he has no conflict of interest. Octavio Manuel Palacios-Gimenez declares that he has no conflict of interest. Dardo Andrea Martí declares that he has no conflict of interest. Tatiane Casagrande Mariguela declares that she has no conflict of interest. Diogo Cavalcanti Cabral-de-Mello declares that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Anjos A, Loreto V, de Souza MJ (2013) Chromosome mapping of ribosomal genes and histone H4 in the genus Radacridium (Romaleidae). Genet Mol Biol 36:336–340CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anjos A, Ruiz-Ruano FJ, Camacho JPM, Loreto V, Cabrero J, de Souza MJ, Cabral-de-Mello DC (2015) U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization. Heredity 114:207–219CrossRefPubMedGoogle Scholar
  4. Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in Abracris flavolineata reveal possible ancestry for the B chromosome and surprisingly H3 histone spreading. PLoS ONE 8:e66532CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cabral-de-Mello DC, Moura RC, Martins C (2010) Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104:393–400CrossRefPubMedGoogle Scholar
  6. Cabral-de-Mello DC, Cabrero J, López-León MD, Camacho JPM (2011a) Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location. Genetica 139:921–931CrossRefPubMedGoogle Scholar
  7. Cabral-de-Mello DC, Martins C, Souza MJ, Moura RC (2011b) Cytogenetic mapping of 5S and 18S rRNAs and H3 histone genes in 4 ancient Proscopiidae grasshopper species: contribution to understanding the evolutionary dynamics of multigene families. Cytogenet Genome Res 132:89–93CrossRefPubMedGoogle Scholar
  8. Castillo ER, Taffarel A, Marti DA (2011) Una técnica alternativa para el cariotipado mitótico en saltamontes: bandeo C y Fluorescente en Adimantus ornatissimus (Orthoptera: Acrididae). Rev Cienc Tecnol 16:30–34Google Scholar
  9. Cross I, Rebordinos L (2005) 5S rDNA and U2 snRNA are linked in the genome of Crassostrea angulate and Crassostrea gigas oysters: does the (CT)n·(GA)n microsatellite stabilize this novel linkage of large tandem arrays? Genome 48:1116–1119CrossRefPubMedGoogle Scholar
  10. da Silva M, Matoso DA, Vicari MR, de Almeida MC, Margarido VP, Artoni RF (2011) Physical mapping of 5S rDNA in two species of knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes). Cytogenet Genome Res 134:303–307CrossRefPubMedGoogle Scholar
  11. Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12:481–493PubMedGoogle Scholar
  12. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R et al (2009) Geneious v4.8.5.
  13. Haper ME, Price J, Korn LJ (1983) Chromosomal mapping of Xenopus 5S genes: somatic-type versus oocyte-type. Nucl Acids Res 11:2313–2323CrossRefGoogle Scholar
  14. Jensen LR, Frederiksen S (2000) The 5S rRNA genes in Macaca fascicularis are organized in two large tandem repeats. Biochim Biophys Acta 1492:537–542CrossRefPubMedGoogle Scholar
  15. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  16. Little RD, Braaten DC (1989) Genomic organization of human 5S rDNA and sequence of one tandem repeat. Genomics 4:376–383CrossRefPubMedGoogle Scholar
  17. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Ann Rev Biochem 49:727–764CrossRefPubMedGoogle Scholar
  18. Martins C, Galetti PM Jr (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44:903–910CrossRefPubMedGoogle Scholar
  19. Martins C, Galleti PM Jr (2001) Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 111:439–446CrossRefPubMedGoogle Scholar
  20. Martins C, Wasko AP, Oliveira C, Porto-Foresti F, Parise-Maltempi PP, Wright JM, Foresti F (2002) Dynamics of 5S rDNA in the tilapia (Oreochromis niloticus) genome: repeat units, inverted sequences, pseudogenes and chromosome loci. Cytogenet Genome Res 98:78–85CrossRefPubMedGoogle Scholar
  21. Merlo MA, Cross I, Palazón JL, Úbeda-Manzanaro M, Sarasquete C, Rebordinos L (2012a) Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families. BMC Evol Biol 12:201CrossRefPubMedPubMedCentralGoogle Scholar
  22. Merlo MA, Pacchiarini T, Portela-Bens S, Cross I, Manchado M, Rebordinos L (2012b) Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families. BMC Genet 13:33CrossRefPubMedPubMedCentralGoogle Scholar
  23. Merlo MA, Cross I, Manchado M, Cárdenas S, Rebordinos L (2013) The 5S rDNA high dynamism in Diplodus sargus is a transposon-mediated mechanism. Comparison with other multigene families and Sparidae species. J Mol Evol 76:83–97CrossRefPubMedGoogle Scholar
  24. Nederby-Nielsen J, Hallenberg C, Frederiksen S, Sorensen PD, Lomholt B (1993) Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acids Res 21:3631–3636CrossRefGoogle Scholar
  25. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Ann Rev Genetics 39:121–152CrossRefGoogle Scholar
  26. Neto MSR, de Souza MJ, Loreto V (2013) Chromosomal evolution of rDNA and H3 histone genes in representative Romaleidae grasshoppers from northeast Brazil. Mol Cytogenetics 6:41CrossRefGoogle Scholar
  27. Palacios-Gimenez OM, Castillo ER, Martí DA, Cabral-de-Mello DC (2013) Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol Biol 13:167CrossRefPubMedPubMedCentralGoogle Scholar
  28. Perina A, Seoane D, González-Tizón AM, Rodríguez-Fariña F, Martínez-Lage A (2011) Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection. BMC Evol Biol 11:304CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pinhal D, Yoshimura TS, Araki CS, Martins C (2011) The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol 11:151CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rebordinos L, Cross I, Merlo A (2013) High evolutionary dynamism in 5S rDNA of fish: State of the Art. Cytogenet Genome Res 141:103–113CrossRefPubMedGoogle Scholar
  32. Rodrigues DS, Rivera M, Lourenço LB (2012) Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae). BMC Genet 13:17CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci USA 102:5084–5089CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sambrook J, Russel DW (2001) Molecular cloning. In: A laboratory manual. 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  35. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  36. Úbeda-Manzanaro M, Merlo MA, Palazón JL, Cross I, Sarasquete C, Rebordinos L (2010) Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and U2 snRNA gene by double-colour FISH in species of the Batrachoididae family. Genetica 138:787–794CrossRefPubMedGoogle Scholar
  37. Vierna J, Jensen KT, Martínez-Lage A, González-Tizón AM (2011) The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae). Heredity 107:127–142CrossRefPubMedPubMedCentralGoogle Scholar
  38. Vierna J, Wehner S, Zu Siederdissen CH, Martínez-Lage A, Marz M (2013) Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity 111:410–421CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vizoso M, Vierna J, González-Tizón AM, Martínez-Lage A (2011) The 5S rDNA gene family in Mollusks: characterization of transcriptional regulatory regions, prediction of secondary structures, and long-term evolution, with special attention to Mytilidae mussels. J Heredity 102:433–447CrossRefGoogle Scholar
  40. Wasko PA, Martins C, Wright JM, Galetti PM Jr (2001) Molecular organization of 5S rDNA in fishes of the genus Brycon. Genome 44:893–902CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danilo Bueno
    • 1
  • Octavio Manuel Palacios-Gimenez
    • 1
  • Dardo Andrea Martí
    • 2
  • Tatiane Casagrande Mariguela
    • 3
  • Diogo Cavalcanti Cabral-de-Mello
    • 1
  1. 1.Departamento de Biologia, Instituto de Biociências/IBUNESP, Univ Estadual PaulistaRio ClaroBrazil
  2. 2.Laboratorio de Genética Evolutiva, IBS, Facultad de Ciencias Exactas, Químicas y NaturalesCONICET, Universidad Nacional de MisionesPosadasArgentina
  3. 3.Departamento de Zoologia, Instituto de Biociências/IBUNESP, Univ Estadual PaulistaRio ClaroBrazil

Personalised recommendations