Molecular Genetics and Genomics

, Volume 291, Issue 2, pp 789–799 | Cite as

Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis

  • Min Yao
  • Weihua Gao
  • Hengxun Tao
  • Jun Yang
  • Guoping Liu
  • Tinghua HuangEmail author
Original Article


Salmonella infects many vertebrate species, and pigs colonized with Salmonella are typically Salmonella carriers. Transcriptomic analysis of the response to Salmonella infection in whole blood has been reported for the pig. The objective of this study is to identify the important miRNAs involved in Salmonella infection using binding site enrichment analysis. We predicted porcine microRNA (miRNA) binding sites in the 3′ UTR of protein-coding genes for all miRNA families. Based on those predictions, we analyzed miRNA-binding sites for mRNAs expressed in peripheral blood to investigate the functional importance of miRNAs in Salmonella infection in pig. Enrichment analysis revealed that binding sites of five miRNAs (including miR-143, -9839, -26, -2483, and -4335) were significantly over represented for the differentially expressed gene sets. Real-time PCR results indicated that selected members of this miRNA group (miR-143, -26, and -4335) were differentially expressed in whole blood after Salmonella inoculation. The luciferase reporter assay showed that ATP6V1A and IL13RA1 were targets of miR-143 and that miR-26 regulates BINP3L and ARL6IP6. The results strongly suggest that miR-143 and miR-26 play important regulatory roles in the development of Salmonella infection in pig.


Pig Salmonella microRNA miR-143 miR-26 


Compliance with ethical standards


This project was funded by the National Natural Science Foundation of China (NSFC Grant No. 31402055), the Yangtze Youth Talents Fund (Grant No. 2015cqr12), the Yangtze Youth Fund (Grant No. 2015cqn39), and Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material (60.7 mb)
Supplementary material 1 (ZIP 62145 kb)
438_2015_1146_MOESM2_ESM.txt (52 kb)
Supplementary material 2 (TXT 51 kb) (106.8 mb)
Supplementary material 3 (ZIP 109384 kb)
438_2015_1146_MOESM4_ESM.xlsx (1 mb)
Supplementary material 4 (XLSX 1055 kb)
438_2015_1146_MOESM5_ESM.xlsx (43 kb)
Supplementary material 5 (XLSX 42 kb)
438_2015_1146_MOESM6_ESM.docx (16 kb)
Supplementary material 6 (DOCX 15 kb)
438_2015_1146_MOESM7_ESM.xlsx (14 kb)
Supplementary material 7 (XLSX 13 kb)
438_2015_1146_MOESM8_ESM.doc (46 kb)
Supplementary material 8 (DOC 46 kb)


  1. Akao Y, Nakagawa Y, Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16:845–850PubMedGoogle Scholar
  2. Alexiou P, Maragkakis M, Papadopoulos GL, Simmosis VA, Zhang L, Hatzigeorgiou AG (2010) The DIANA-mirExTra web server: from gene expression data to microRNA function. PLoS One 5:e9171CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662CrossRefPubMedGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  6. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bonelli P, Petrella A, Rosati A, Romano MF, Lerose R, Pagliuca MG, Amelio T, Festa M, Martire G, Venuta S, Turco MC, Leone A (2004) BAG3 protein regulates stress-induced apoptosis in normal and neoplastic leukocytes. Leukemia 18:358–360CrossRefPubMedGoogle Scholar
  8. Chang KH, Miller N, Kheirelseid EA, Ingoldsby H, Hennessy E, Curran CE, Curran S, Smith MJ, Regan M, McAnena OJ, Kerin MJ (2011) MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol 37:597–603CrossRefPubMedGoogle Scholar
  9. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28:1385–1392CrossRefPubMedGoogle Scholar
  11. Chen Y, Lewis W, Diwan A, Cheng EH, Matkovich SJ, Dorn GW 2nd (2010) Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc Natl Acad Sci USA 107:9035–9042CrossRefPubMedPubMedCentralGoogle Scholar
  12. Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PH (2008) A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA 14:2290–2296CrossRefPubMedPubMedCentralGoogle Scholar
  13. Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  14. Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  15. Edwards RA, Olsen GJ, Maloy SR (2002) Comparative genomics of closely related salmonellae. Trends Microbiol 10:94–99CrossRefPubMedGoogle Scholar
  16. Fedorka-Cray PJ, Kelley LC, Stabel TJ, Gray JT, Laufer JA (1995) Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in swine. Infect Immun 63:2658–2664PubMedPubMedCentralGoogle Scholar
  17. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fu J, Tang W, Du P, Wang G, Chen W, Li J, Zhu Y, Gao J, Cui L (2012) Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Syst Biol 6:68CrossRefPubMedPubMedCentralGoogle Scholar
  19. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105CrossRefPubMedPubMedCentralGoogle Scholar
  21. Guo F, Li Y, Liu Y, Wang J, Li G (2010) ARL6IP1 mediates cisplatin-induced apoptosis in CaSki cervical cancer cells. Oncol Rep 23:1449–1455PubMedGoogle Scholar
  22. Hoeke L, Sharbati J, Pawar K, Keller A, Einspanier R, Sharbati S (2013) Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 8:e67300CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huang TH, Zhu MJ, Li XY, Zhao SH (2008) Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One 3:e3225CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang TH, Uthe JJ, Bearson SM, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK (2011a) Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. PLoS One 6:e28768CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X, Du X (2011b) MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res 71:2582–2589CrossRefPubMedGoogle Scholar
  26. Hurd HS, McKean JD, Wesley IV, Karriker LA (2001) The effect of lairage on Salmonella isolation from market swine. J Food Prot 64:939–944PubMedGoogle Scholar
  27. Imazu T, Shimizu S, Tagami S, Matsushima M, Nakamura Y, Miki T, Okuyama A, Tsujimoto Y (1999) Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 18:4523–4529CrossRefPubMedGoogle Scholar
  28. Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007:re1Google Scholar
  29. Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24:980–991CrossRefPubMedGoogle Scholar
  30. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  31. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, Reid G (2011) Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 6:e24145CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G (2013) The impact of hemolysis on cell-free microRNA biomarkers. Front Genet 4:94PubMedPubMedCentralGoogle Scholar
  33. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee HM, Nguyen DT, Lu LF (2014) Progress and challenge of microRNA research in immunity. Front Genet 5:178CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798CrossRefPubMedGoogle Scholar
  38. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, Oza JH, Yao M, Juan D, Liou LS, Ganesan S, Levine AJ, Rathmell WK, Bhanot GV (2010) Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol 4:51CrossRefPubMedPubMedCentralGoogle Scholar
  39. Loynachan AT, Nugent JM, Erdman MM, Harris DL (2004) Acute infection of swine by various Salmonella serovars. J Food Prot 67:1484–1488PubMedGoogle Scholar
  40. Maudet C, Mano M, Sunkavalli U, Sharan M, Giacca M, Förstner KU, Eulalio A (2014) Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat Commun 5:4718. doi: 10.1038/ncomms5718 CrossRefPubMedGoogle Scholar
  41. Montecucco C, Rappuoli R (2001) Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2:457–466CrossRefPubMedGoogle Scholar
  42. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37:D155–D158CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pekow JR, Dougherty U, Mustafi R, Zhu H, Kocherginsky M, Rubin DT, Hanauer SB, Hart J, Chang EB, Fichera A, Joseph LJ, Bissonnette M (2012) miR-143 and miR-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes. Inflamm Bowel Dis 18:94–100CrossRefPubMedPubMedCentralGoogle Scholar
  44. Peng X, Li Y, Walters KA, Rosenzweig ER, Lederer SL, Aicher LD, Proll S, Katze MG (2009) Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 10:373CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prigent M, Barlat I, Langen H, Dargemont C (2000) IkappaBalpha and IkappaBalpha/NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2. J Biol Chem 275:36441–36449CrossRefPubMedGoogle Scholar
  46. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rieder G, Fischer W, Haas R (2005) Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol 8:67–73CrossRefPubMedGoogle Scholar
  48. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J (2011) Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 30:1977–1989CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schulte LN, Westermann AJ, Vogel J (2013) Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41:542–553CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sheikh F, Dickensheets H, Pedras-Vasconcelos J, Ramalingam T, Helming L, Gordon S, Donnelly RP (2015) The Interleukin-13 receptor-alpha1 chain is essential for induction of the alternative macrophage activation pathway by IL-13 but not IL-4. J Innate Immun 7:494–505CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 103:2746–2751CrossRefPubMedPubMedCentralGoogle Scholar
  53. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A (2010) Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med 16:49–58CrossRefPubMedGoogle Scholar
  54. Sun K, Wang W, Zeng JJ, Wu CT, Lei ST, Li GX (2011) MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacol Sin 32:375–384CrossRefPubMedPubMedCentralGoogle Scholar
  55. Teng Y, Zhang R, Liu C, Zhou L, Wang H, Zhuang W, Huang Y, Hong Z (2015) miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Ralpha1. Biochem Biophys Res Commun 457:58–64CrossRefPubMedGoogle Scholar
  56. Ulitsky I, Laurent LC, Shamir R (2010) Towards computational prediction of microRNA function and activity. Nucleic Acids Res 38:e160CrossRefPubMedPubMedCentralGoogle Scholar
  57. Umeshita-Suyama R, Sugimoto R, Akaiwa M, Arima K, Yu B, Wada M, Kuwano M, Nakajima K, Hamasaki N, Izuhara K (2000) Characterization of IL-4 and IL-13 signals dependent on the human IL-13 receptor alpha chain 1: redundancy of requirement of tyrosine residue for STAT3 activation. Int Immunol 12:1499–1509CrossRefPubMedGoogle Scholar
  58. Unoki M, Nakamura Y (2003) EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene 22:2172–2185CrossRefPubMedGoogle Scholar
  59. van Dongen S, Abreu-Goodger C, Enright AJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5:1023–1025CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, Chen HY, Sun XF (2009) Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26:27–34CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang HQ, Meng X, Gao YY, Liu BQ, Niu XF, Zhang HY, Du ZX (2010) Characterization of BAG3 cleavage during apoptosis of pancreatic cancer cells. J Cell Physiol 224:94–100PubMedGoogle Scholar
  62. Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R, Pan Z, Kang T, Huang W (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32:1033–1042CrossRefPubMedGoogle Scholar
  63. Wigley P (2004) Genetic resistance to Salmonella infection in domestic animals. Res Vet Sci 76:165–169CrossRefPubMedGoogle Scholar
  64. Wood RL, Rose R (1992) Populations of Salmonella typhimurium in internal organs of experimentally infected carrier swine. Am J Vet Res 53:653–658PubMedGoogle Scholar
  65. Wu X, Watson M (2009) CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25:832–833CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang Y, Chaerkady R, Kandasamy K, Huang TC, Selvan LD, Dwivedi SB, Kent OA, Mendell JT, Pandey A (2010) Identifying targets of miR-143 using a SILAC-based proteomic approach. Mol BioSyst 6:1873–1882CrossRefPubMedGoogle Scholar
  68. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, Liu F, Zhang CY, Gu H, Zen K (2014) Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis 209:2000–2011CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhu H, Dougherty U, Mustafi R, Robinson VL, Pekow J, Fichera A, Joseph LJ, Bissonnette M (2010) 679 putative tumor suppressors miR-143 and miR-145 inhibit HCT116 colon cancer cell growth in tumor xenografts: roles of K-RAS, MYC, Ccnd2 and Cdk6. Gastroenterology 138:S-93Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Min Yao
    • 1
  • Weihua Gao
    • 1
  • Hengxun Tao
    • 1
  • Jun Yang
    • 1
  • Guoping Liu
    • 1
    • 2
  • Tinghua Huang
    • 1
    Email author
  1. 1.College of Animal ScienceYangtze UniversityJingzhouChina
  2. 2.Black Pig Research InstituteYangtze UniversityJingzhouChina

Personalised recommendations