Molecular Genetics and Genomics

, Volume 291, Issue 2, pp 775–787 | Cite as

Molecular cytogenetic analysis and genomic organization of major DNA repeats in castor bean (Ricinus communis L.)

Original Article

Abstract

This article addresses the bioinformatic, molecular genetic, and cytogenetic study of castor bean (Ricinus communis, 2n = 20), which belongs to the monotypic Ricinus genus within the Euphorbiaceae family. Because castor bean chromosomes are small, karyotypic studies are difficult. However, the use of DNA repeats has yielded new prospects for karyotypic research and genome characterization. In the present study, major DNA repeat sequences were identified, characterized and localized on mitotic metaphase and meiotic pachytene chromosomes. Analyses of the nucleotide composition, curvature models, and FISH localization of the rcsat39 repeat suggest that this repeat plays a key role in building heterochromatic arrays in castor bean. Additionally, the rcsat390 sequences were determined to be chromosome-specific repeats located in the pericentromeric region of mitotic chromosome A (pachytene chromosome 1). The localization of rcsat39, rcsat390, 45S and 5S rDNA genes allowed for the development of cytogenetic landmarks for chromosome identification. General questions linked to heterochromatin formation, DNA repeat distribution, and the evolutionary emergence of the genome are discussed. The article may be of interest to biologists studying small genome organization and short monomer DNA repeats.

Keywords

Castor bean Fluorescence in situ hybridization (FISH) Heterochromatin DNA repeats DNA curvature Chromosome landmarks Karyotype formation 

Abbreviations

FISH

Fluorescence in situ hybridization

DAPI

4,6-Diamidino-2-phenylindole

CMA

Chromomycin A3

rDNA

Ribosomal DNA

TRF

Tandem Repeats Finder software

PCR

Polymerase chain reaction

BLAST

Basic local alignment search tool

SSC

Saline-sodium citrate

Notes

Acknowledgments

We thank Dr. Mikhail Divashuk for help in sequencing, Dr. Mikhail Bazhenov for help in text correction and Tatyana Alexandrova for help with English editing.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

This article did not involve the study of human participants or animals.

Supplementary material

438_2015_1145_MOESM1_ESM.doc (80 kb)
Supplementary material 1 (DOC 79 kb)
438_2015_1145_MOESM2_ESM.doc (270 kb)
Supplementary material 2 (DOC 270 kb)
438_2015_1145_MOESM3_ESM.doc (246 kb)
Supplementary material 3 (DOC 246 kb)
438_2015_1145_MOESM4_ESM.doc (2.5 mb)
Supplementary material 4 (DOC 2518 kb)
438_2015_1145_MOESM5_ESM.doc (178 kb)
Supplementary material 5 (DOC 178 kb)

References

  1. APG III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  2. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–219CrossRefGoogle Scholar
  3. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefPubMedPubMedCentralGoogle Scholar
  4. Biscotti MA, Canapa A, Olmo E, Barucca M, Teo CH, Schwarzacher T, Dennerlein S, Richter R, Heslop-Harrison JS (2007) Repetitive DNA, molecular cytogenetics and genome organizationin the King scallop (Pecten maximus). Gene 406:91–98CrossRefPubMedGoogle Scholar
  5. Bonnacorsi S, Lohe A (1991) Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics 129:177–189Google Scholar
  6. Campell BR, Song Y, Posch TE, Cullis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225–228CrossRefPubMedGoogle Scholar
  7. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chien Y-L, Lin C-Y, Lo K-L, Cheng Y-M (2014) Development and mapping of CL-repeat display markers on the maize B chromosome. Cytogenet Genome Res 144:227–236CrossRefPubMedGoogle Scholar
  10. Čížková J, Hřibová E, Humplíková L, Christelová P, Suchánková P, Doležel J (2013) Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS ONE 8:e54808CrossRefPubMedPubMedCentralGoogle Scholar
  11. da Silva NL, Maciel MRW, Batistella CB, Filho RM (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 130:405–414CrossRefGoogle Scholar
  12. Danilova and Birchler (2008) Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma 117:345–356CrossRefPubMedGoogle Scholar
  13. Deumling B (1981) Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: A tandemly repeated inverted repeat. Proc Natl Acad Sci USA 78:338–342CrossRefPubMedPubMedCentralGoogle Scholar
  14. Diekmann S (1986) Sequence specificity of curved DNA. FEBS Lett 195:53–56CrossRefPubMedGoogle Scholar
  15. Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS ONE 9(1):e85118CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fann JY, Kovarik A, Hemleben V, Tsirekidze NI, Beridze TG (2001) Molecular and structural evolution of Citrus satellite DNA. Theor Appl Genet 103:1068–1073CrossRefGoogle Scholar
  17. Flavell AJ, Smith DB, Kumar A (1992) Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gene Genet 231:233–242Google Scholar
  18. Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188CrossRefPubMedGoogle Scholar
  19. Ganal M, Riede I, Hemleben V (1986) Organization and sequence analysis of two related satellite DNAs in Cucumber (Cucumis sativus L.). J Mol Evol 23:23–30CrossRefGoogle Scholar
  20. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gong Z, Wu Y, Koblížková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell R, Macas J, Jiang J (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  23. Hizume M, Shibata F, Maruyama Y, Kondo T (2001) Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. and Zucc. Chromosoma 110:345–351CrossRefPubMedGoogle Scholar
  24. Hsieh LJ, Cheng YM, WangYC Lin CC, Li YC (2014) Organization and evolution of a novel cervid satellite DNA with yeast CDEI-like repeats. Zool Stud 53:25CrossRefGoogle Scholar
  25. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  26. Iovene M, Cavagnaro PF, Senalik D, Buell CR, Jiang J, Simon PW (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 19:493–506CrossRefPubMedGoogle Scholar
  27. Jelenkovic G, Harrington E (1973) Chromosome complement of Ricinus communis at pachytene and early diplotene. J Hered 64:137–142Google Scholar
  28. Johnson S, Chen YJ, Phillips R (2013) Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. PLoS ONE 8:e75799CrossRefPubMedPubMedCentralGoogle Scholar
  29. Karlov GI, Danilova TV, Horlemann C, Weber G (2003) Molecular cytogenetic in hop (Humulus lupulus L.) and identification of sex chromosomes by DAPI-banding. Euphytica 132:185–190CrossRefGoogle Scholar
  30. Karlov GI, Fesenko IA, Andreeva GN, Khrustaleva LI (2010) Chromosome organization of Ty1-copia-like retrotransposons in the tomato genome. Russ J Genet 46:677–681CrossRefGoogle Scholar
  31. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting in maize using repetitive DNA sequences as probes for somatic chromosome identification. Proc Natl Acad Sci 101:13554–13559CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kirov I, Divashuk M, Van Laere K, Soloviev A, Khrustaleva L (2014) An easy “SteamDrop” method for high quality plant chromosome preparation. Molecular Cytogenetics 7:21CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183CrossRefPubMedGoogle Scholar
  34. Luo S, Mach J, Abramson B, Ramirez R, Schurr R, Barone P, Copenhaver G, Folkerts O (2012) The cotton centromere contains a Ty3-gypsy-like LTR retroelement. PLoS ONE 7:e35261CrossRefPubMedPubMedCentralGoogle Scholar
  35. Macas J, Pozárková D, Navrátilová A, Nouzová M, Neumann P (2000) Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Genet Genomics 263:741–751CrossRefGoogle Scholar
  36. Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioceous plant Silene latifolia. PLoS ONE 6:e27335CrossRefPubMedPubMedCentralGoogle Scholar
  37. Marini JC, Levene SD, Crothers DM, Englund PT (1982) Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 79:7664–7668CrossRefPubMedPubMedCentralGoogle Scholar
  38. Melters D, Bradnam K, Young H, Telis N, May M, Ruby J, Sebra R, Peluso P, Eid J, Rank D, Garcia J, DeRisi J, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan S (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10CrossRefPubMedPubMedCentralGoogle Scholar
  39. Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7CrossRefGoogle Scholar
  40. Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623PubMedPubMedCentralGoogle Scholar
  41. Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203CrossRefPubMedGoogle Scholar
  42. Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145CrossRefPubMedGoogle Scholar
  43. Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8:e1002777CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. Emb New News 4:14Google Scholar
  45. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091CrossRefPubMedGoogle Scholar
  46. Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato K, Fukuzawa H, Brennicke A, Ohyama K (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459CrossRefPubMedPubMedCentralGoogle Scholar
  47. Paris HS, Shifriss O, Jelenkovic G (1978) Idiogram of Ricinus communis. J Hered 69:191–196Google Scholar
  48. Paris HS, Shifriss O, Jelenkovic G (1980) Nucleolar organizing chromosomes of Ricinus. Theor Appl Genet 57:145–152CrossRefGoogle Scholar
  49. Pauciullo A, Kubickova S, Cernohorska H, Petrova K, Di Berardino D, Ramunno L, Rubes J (2006) Isolation and physical localization of new chromosome specific centromeric repeats in farm animals. Vet Med 51:224–231Google Scholar
  50. Perry BA (1943) Chromosome number and phylogenetic relationships in the Euphorbiaceae. Am J Bot 30:527–543CrossRefGoogle Scholar
  51. Petrović V, Pérez-García C, Pasantes J, Šatović E, Prats E, Plohl M (2009) A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin. Cytogenet Genome Res 124:63–71CrossRefPubMedGoogle Scholar
  52. Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energ Fuel 23:2325–2341CrossRefGoogle Scholar
  53. Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728CrossRefPubMedGoogle Scholar
  54. Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large scale organization of plant chromosomes. Trends Plant Sci 3:195–199CrossRefGoogle Scholar
  55. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324CrossRefPubMedGoogle Scholar
  56. Shibata F, Nagaki K, Yokota E, Murata M (2013) Tobacco karyotyping by accurate centromere identification and novel repetitive DNA localization. Chromosome Res 21:375–381CrossRefPubMedGoogle Scholar
  57. Simmonds NW (1954) Chromosome behavior in some tropical plants. Heredity 8:139–145CrossRefGoogle Scholar
  58. Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124:339–350CrossRefPubMedGoogle Scholar
  59. Stupar RM, Song JQ, Tek AL, Cheng ZK, Dong FG, Jiang JM (2002) Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162:1435–1444PubMedPubMedCentralGoogle Scholar
  60. Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210CrossRefPubMedGoogle Scholar
  61. Tek AL, Song JQ, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tek AL, Kashihara K, Murata M, Nagaki K (2011) Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat. Chromosome Res 19:969–978CrossRefPubMedGoogle Scholar
  63. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  64. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  65. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  66. Vasconcelos S, Souza AA, Gusmão CLS, Milani M, Benko-Iseppon AM, Brasileiro-Vidal AC (2010) Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron 41:746–753CrossRefPubMedGoogle Scholar
  67. Vogt P (1990) Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code”. Hum Genet 84:301–306PubMedGoogle Scholar
  68. Webster GL (1994) Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann Mo Bot Gard 81:33–144CrossRefGoogle Scholar
  69. Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S, Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang TJ, Lee S, Chang SB, Yu Y, de Jong H, Wing RA (2005) In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114:103–117CrossRefPubMedGoogle Scholar
  71. Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing R, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023–2030CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang HQ, Koblížková A, Wang K, Gong ZY, Oliveira L, Torres GA, Wu YF, Zhang WL, Novák P, Buell CR, Macas J, Jiang JM (2014) Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: Rapid evolution of DNA sequences associated with centromeres. Plant Cell 26:1436–1447CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhao Z, Guo C, Sutharzan S, Li P, Echt CS, Zhang J, Liang C (2014) Genome-wide analysis of tandem repeats in plants and green algae. G3(10):67–78Google Scholar
  74. Zhong XB, Fransz PF, van Eden JW, Zabel P, van Kammen A, de Jong JH (1996) High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence in situ hybridization. Plant Mol Biol Rep 14:232–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Center for Molecular BiotechnologyRussian State Agrarian University, Moscow Timiryazev Agricultural AcademyMoscowRussia

Personalised recommendations