Molecular Genetics and Genomics

, Volume 291, Issue 3, pp 1467–1485 | Cite as

Sequences enhancing cassava mosaic disease symptoms occur in the cassava genome and are associated with South African cassava mosaic virus infection

  • A. T. Maredza
  • F. Allie
  • G. Plata
  • M. E. C. ReyEmail author
Original Paper


Cassava is an important food security crop in Sub-Saharan Africa. Two episomal begomovirus-associated sequences, named Sequences Enhancing Geminivirus Symptoms (SEGS1 and SEGS2), were identified in field cassava affected by the devastating cassava mosaic disease (CMD). The sequences reportedly exacerbated CMD symptoms in the tolerant cassava landrace TME3, and the model plants Arabidopsis thaliana and Nicotiana benthamiana, when biolistically co-inoculated with African cassava mosaic virus-Cameroon (ACMV-CM) or East African cassava mosaic virus-UG2 (EACMV-UG2). Following the identification of small SEGS fragments in the cassava EST database, the intention of this study was to confirm their presence in the genome, and investigate a possible role for these sequences in CMD. We report that multiple copies of varying lengths of both SEGS1 and SEGS2 are widely distributed in the sequenced cassava genome and are present in several other cassava accessions screened by PCR. The endogenous SEGS1 and SEGS2 are in close proximity or overlapping with cassava genes, suggesting a possible role in regulation of specific biological processes. We confirm the expression of SEGS in planta using EST data and RT-PCR. The sequence features of endogenous SEGS (iSEGS) are unique but resemble non-autonomous transposable elements (TEs) such as MITEs and helitrons. Furthermore, many SEGS-associated genes, some involved in virus–host interactions, are differentially expressed in susceptible (T200) and tolerant TME3) cassava landraces infected by South African cassava mosaic virus (SACMV) of susceptible (T200) and tolerant (TME3) cassava landraces. Abundant SEGS-derived small RNAs were also present in mock-inoculated and SACMV-infected T200 and TME3 leaves. Given the known role of TEs and associated genes in gene regulation and plant immune responses, our observations are consistent with a role of these DNA elements in the host’s regulatory response to geminiviruses.


Cassava mosaic disease Sequences Enhancing Geminivirus Symptoms Satellites Begomovirus Transposable elements 



This project was supported by Grants from the National Research Foundation Competitive Grant and the International Center for Genetic Engineering and Biotechnology, Trieste. ATM was supported by Claude Leon Foundation and NRF-South Africa. We would like to thank Dr. Louis Bengyella for assistance in the phylogenetic analysis.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

438_2015_1049_MOESM1_ESM.pdf (3.4 mb)
Online Resources 1 Single-primer amplified fragment from healthy cassava is similar to episomal SEGS1. Online Resource 2 iSEGS1 elements in the cassava genome. Online Resource 3 iSEGS2 elements in the cassava genome. Online Resource 4 Large fragments homologous to SEGS1 found in the cassava genome. Online Resource 5 Large fragments homologous to SEGS2 found in the cassava genome. Online Resource 6 Mapping of TIRs in episomal and integrated SEGS and prediction of secondary structures (Mfold). Online Resource 7 Gene ontologies (GO) annotations of iSEGS-associated genes grouped as “upstream of iSEGS”, “downstream of iSEGS” or “overlapping with iSEGS”. Online Resource 8 iSEGS fragments detected in cassava-expressed sequence tags. Online Resource 9 Cassava ESTs carrying fragments that are homologous to iSEGS1. Online Resource 10 Cassava ESTs carrying fragments that are homologous to iSEGS2. Online Resource 11 Expression of genes proximal to iSEGS1 comparing two cultivars infected with SACMV. Online Resource 12 Expression of genes proximal to iSEGS2 comparing two cultivars infected with SACMV. Online Resource 13 Small RNA sequence data and mapping of sRNAs to SEGS (PDF 3450 kb)


  1. Allie F, Pierce EJ, Okoniewski MJ, Rey C (2014) Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genom 15:1006CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ballen-Taborda C, Plata G, Ayling S, Guez-Zapata F, Lopez-Lavalle B, Luis A, Duitama J, Tohme J (2013) Identification of Cassava MicroRNAs under Abiotic Stress. Int J Genomics. doi: 10.1155/2013/857986 PubMedPubMedCentralGoogle Scholar
  5. Bao W, Jurka J (2008) CR1 families from Hydra magnipapillata. Repbase Reports 8:1845Google Scholar
  6. Bao W, Jurka J (2013) LTR retrotransposons from the red seaweed. Repbase Reports 13:2407Google Scholar
  7. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90CrossRefPubMedGoogle Scholar
  8. Berrie LC, Rybicki EP, Rey ME (2001) Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses. J Gen Virol 82:53–58CrossRefPubMedGoogle Scholar
  9. Borah BK, Cheema GS, Gill CK, Dasgupta I (2011) A Geminivirus–Satellite Complex is associated with leaf deformity of Mentha (Mint) plants in Punjab. Indian J Virol 21:103–109CrossRefPubMedCentralGoogle Scholar
  10. Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA beta: a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20:315–318CrossRefPubMedGoogle Scholar
  11. Brown J, Fauquet C, Briddon R, Zerbini M, Navas-Castillo J (2011) Family Geminiviridae, 1st edn. Elsevier-Academic, Amsterdam, pp 351–373Google Scholar
  12. Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96CrossRefPubMedGoogle Scholar
  14. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Drosophila 12 Genomes Consortium et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRefPubMedGoogle Scholar
  15. Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury J-M, Barbosa-Neto JF, Bothwell JH, Bouget F-Y, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci 110:5247–5252CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Leòn L, Dallas L, Ascencio-Ibáñez J, Sseruwagi P, Robertson D, Ndunguru J, Hanley-Bowdoin L (2013) Two CMD-associated DNA sequences enhance geminivirus symptoms and break resistance in cassava and Arabidopsis. 7th Int. Geminivirus Symp. 5th Int. ssDNA Comp. Virol. Work. Hangzhou, China, p 86Google Scholar
  17. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) From the Cover: PNAS Plus: widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci 109:E2183–E2191CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fondong VN, Pita JS, Rey MEC, de Kochko A, Beachy RN, Fauquet CM (2000) Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J Gen Virol 81:287–297CrossRefPubMedGoogle Scholar
  19. Fregene M, Okogbenin E, Mba C, Angel F, Suarez MC, Janneth G, Chavarriaga P, Roca W, Bonierbale M, Tohme J (2001) Genome mapping in cassava improvement: challenges, achievements and opportunities. Euphytica 120:159–165CrossRefGoogle Scholar
  20. Gbadegesin MA, Wills MA, Beeching JR (2008) Diversity of LTR-retrotransposons and Enhancer/Suppressor Mutator-like transposons in cassava (Manihot esculenta Crantz). Mol Genet Genomics 280:305–317CrossRefPubMedGoogle Scholar
  21. Gibson RW, Legg JP, Otim-Nape GW (1996) Unusually severe symptoms are a characteristic of the current epidemic of mosaic virus disease of cassava in Uganda. Ann Appl Biol 128:479–490CrossRefGoogle Scholar
  22. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186CrossRefGoogle Scholar
  23. Guo A, Durner J, Klessig DF (1998) Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J 15:647–656CrossRefPubMedGoogle Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. pp 95–98Google Scholar
  25. Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788CrossRefPubMedGoogle Scholar
  27. Harper G, Hull R, Lockhart B, Olszewski N (2002) Viral sequences integrated into plant genomes. Ann Rev Phytopathol 40:119–136CrossRefGoogle Scholar
  28. Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  29. Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Ann Rev Genet 36:175–203CrossRefPubMedGoogle Scholar
  30. Jurka J (2008a) Conserved eukaryotic transposable elements and the evolution of gene regulation. Cell Mol Life Sci 65:201–204CrossRefPubMedGoogle Scholar
  31. Jurka J (2008b) P-type DNA transposon families from Hydra magnipapillata. Repbase Reports 8:353Google Scholar
  32. Jurka J, Kohany O (2009) LTR retrotransposons from fruit fly. Repbase Reports 9:1046Google Scholar
  33. Jurka J, Kojima K (2012) LTR retrotransposons from fruit fly. Repbase Reports 12:1512Google Scholar
  34. Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529CrossRefPubMedGoogle Scholar
  35. Legg JP, Owor B, Sseruwagi P, Ndunguru J (2006) Cassava Mosaic Virus Disease in East and Central Africa: epidemiology and Management of A Regional Pandemic. Adv Virus Res 67:355–418CrossRefPubMedGoogle Scholar
  36. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66CrossRefPubMedGoogle Scholar
  37. Louis B, Waikhom SD, Roy P, Bhardwaj PK, Sharma CK, Singh MW, Talukdar NC (2014) Host-range dynamics of Cochliobolus lunatus: From a biocontrol agent to a severe environmental threat. Biomed Res Int. doi: 10.1155/2014/378372 PubMedPubMedCentralGoogle Scholar
  38. Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29:1005–1017CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon R, Stanley J, Markham PG (1999) Identification of a Novel Circular Single-Stranded DNA associated with Cotton Leaf Curl Disease in Pakistan. Virology 259:190–199CrossRefPubMedGoogle Scholar
  40. Mayo M, Leibowitz M, Palukaitis P, Scholthof KBG, Simon AE, Stanley J, Taliansky M (2005) Satellites. Elsevier/Academic Press, London, pp 1163–1169Google Scholar
  41. Mollel HG (2014) Interaction and impact of cassava mosaic begomoviruses and their associated satellites. M.Sc. Thesis. University of the WitwatersrandGoogle Scholar
  42. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  43. Nakamura K, Particle Data Group et al (2010) Review of particle physics. J Phys G Nucl Part Phys 37:075021CrossRefGoogle Scholar
  44. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832CrossRefPubMedGoogle Scholar
  45. Ndomba OA (2013) Influence of satellite DNA molecules on severity of cassava begomoviruses and the breakdown of resistance to cassava mosaic disease in Tanzania. Ph.D. Thesis. University of the WitwatersrandGoogle Scholar
  46. Ndunguru J (2006) Molecular characterization of cassava mosaic geminiviruses in Tanzania. Ph.D. Thesis. University of PretoriaGoogle Scholar
  47. Ndunguru J, Fofana B, Legg J, Challepan P, Taylor N, Aveling T, Thompson G, Fauquet CM (2008) Two novel satellite DNAs associated with bipartite cassava mosaic begomoviruses enhancing symptoms and capable of breaking high virus resistance in a cassava landraces. Ghent University, Ghent, p 141Google Scholar
  48. Ntawuruhunga P, Legg J, Okidi J, Okao-Okuja G, Tadu G, Remington T (2007) Southern Sudan, Equatoria Region, Cassava Baseline Survey Technical Report, vol 64. IITA, IbadanGoogle Scholar
  49. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83:321–329CrossRefPubMedGoogle Scholar
  51. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  52. Patil BL, Fauquet CM (2009) Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10:685–701CrossRefPubMedGoogle Scholar
  53. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606CrossRefPubMedGoogle Scholar
  54. Pérez-Quintero ÁL, Quintero A, Urrego O, Vanegas P, López C (2012) Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biol 12:1–11CrossRefGoogle Scholar
  55. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pita JS, Fondong VN, Sangaré A, Otim-Nape GW, Ogwal S, Fauquet CM (2001) Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82:655–665CrossRefPubMedGoogle Scholar
  57. Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94CrossRefPubMedPubMedCentralGoogle Scholar
  58. Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82:8997–9007CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sahu PP, Rai NK, Chakraborty S, Singh M, Chandrappa PH, Ramesh B, Chattopadhyay D, Prasad M (2010) Tomato cultivar tolerant to tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544CrossRefPubMedGoogle Scholar
  60. Sakurai T, Plata G, Rodríguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66. doi: 10.1186/1471-2229-7-66 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  63. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tewari R, Bailes E, Bunting KA, Coates JC (2010) Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20:470–481CrossRefPubMedGoogle Scholar
  65. Thomas J, Schaack S, Pritham EJ (2010) Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol 2:656–664CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhou X (2013) Advances in understanding begomovirus satellites. Ann Rev Phytopathol 51:357–381CrossRefGoogle Scholar
  68. Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD (1997) Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111CrossRefPubMedGoogle Scholar
  69. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. T. Maredza
    • 1
  • F. Allie
    • 1
  • G. Plata
    • 2
  • M. E. C. Rey
    • 1
    Email author
  1. 1.School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburg, WitsSouth Africa
  2. 2.Department of Systems BiologyColumbia University in the City of New YorkNew YorkUSA

Personalised recommendations