Molecular Genetics and Genomics

, Volume 290, Issue 5, pp 1933–1941 | Cite as

Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand

  • Sanjib Mani Regmi
  • Angkana ChaiprasertEmail author
  • Supasak Kulawonganunchai
  • Sissades Tongsima
  • Olabisi Oluwabukola Coker
  • Therdsak Prammananan
  • Wasna Viratyosin
  • Iyarit Thaipisuttikul
Original Paper


The Mycobacterium tuberculosis Beijing family is often associated with multidrug resistance and large outbreaks. Conventional genotyping study of a community outbreak of multidrug-resistant tuberculosis (MDR-TB) that occurred in Kanchanaburi Province, Thailand was carried out. The study revealed that the outbreak was clonal and the strain was identified as a member of Beijing family. Although, the outbreak isolates showed identical spoligotyping and mycobacterial interspersed repetitive units-variable number tandem repeats patterns, a discrepancy regarding ethambutol resistance was observed. In-depth characterization of the isolates through whole genome sequencing of the first and the last three isolates from our culture collection showed them to belong to principal genetic group 1, single nucleotide polymorphism (SNP) cluster group 2, sequence type 10. Compared with the M. tuberculosis H37Rv reference genome, 1242 SNPs were commonly found in all isolates. The genomes of these isolates were shown to be clonal and highly stable over a 5-year period and two or three unique SNPs were identified in each of the last three isolates. Genes known to be associated with drug resistance and their promoter regions, where applicable, were analyzed. The presence of low or no fitness cost mutations for drug resistance and an additional L731P SNP in the rpoB gene was observed in all isolates. These findings might account for the successful transmission of this MDR-TB strain.


Mycobacterium tuberculosis Multidrug resistance Outbreak Whole genome sequencing Thailand 



This work was jointly supported by Japan Science and Technology Agency (JST), National Science and Technology Development Agency (NSTDA), and Mahidol University Research Fund grants P-12-01777 and MU-PD_2014_03. AC was supported by a Chalermprakiat grant, Faculty of Medicine Siriraj Hospital, Mahidol University. SM was supported by a Siriraj Graduate Scholarship and Siriraj Graduate Thesis Scholarship.

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

438_2015_1048_MOESM1_ESM.xls (304 kb)
Supplementary material 1 (XLS 303 kb)


  1. Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9:461–465CrossRefPubMedGoogle Scholar
  2. Bifani PJ, Mathema B, Liu Z, Moghazeh SL, Shopsin B, Tempalski B, Driscol J, Frothingham R, Musser JM, Alcabes P, Kreiswirth BN (1999) Identification of a W variant outbreak of Mycobacterium tuberculosis via population-based molecular epidemiology. JAMA 282:2321–2327CrossRefPubMedGoogle Scholar
  3. Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN (2002) Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10:45–52CrossRefPubMedGoogle Scholar
  4. Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD (2014) Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2491–2503CrossRefPubMedCentralPubMedGoogle Scholar
  5. Borrell S, Gagneux S (2009) Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 13:1456–1466PubMedGoogle Scholar
  6. Calgin MK, Sahin F, Turegun B, Gerceker D, Atasever M, Koksal D, Karasartova D, Kiyan M (2013) Expression analysis of efflux pump genes among drug-susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates and reference strains. Diagn Microbiol Infect Dis 76:291–297CrossRefPubMedGoogle Scholar
  7. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, Bentley SD, Parkhill J, Nejentsev S, Hoffner SE, Horstmann RD, Brown T, Drobniewski F (2012) Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 22:735–745CrossRefPubMedCentralPubMedGoogle Scholar
  8. Chen YY, Chang JR, Huang WF, Kuo SC, Su IJ, Sun JR, Chiueh TS, Huang TS, Chen YS, Dou HY (2012) Genetic diversity of the Mycobacterium tuberculosis Beijing family based on SNP and VNTR typing profiles in Asian countries. PLoS One 7:e39792CrossRefPubMedCentralPubMedGoogle Scholar
  9. Coker OO, Regmi SM, Suriyaphol P, Chininmanu K, Prammananan T, Chaiprasert A (2014) Whole-genome sequence of a multidrug-resistant Mycobacterium tuberculosis Beijing sequence type 10 isolate from an outbreak in Thailand. Genome Announc 2(4):e00803–e00814Google Scholar
  10. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503CrossRefPubMedCentralPubMedGoogle Scholar
  11. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106–110CrossRefGoogle Scholar
  12. de Steenwinkel JE, ten Kate MT, de Knegt GJ, Kremer K, Aarnoutse RE, Boeree MJ, Verbrugh HA, van Soolingen D, Bakker-Woudenberg IA (2012) Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB. Emerg Infect Dis 18:660–663CrossRefPubMedCentralPubMedGoogle Scholar
  13. de Vos M, Muller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC (2013) Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57:827–832CrossRefPubMedCentralPubMedGoogle Scholar
  14. Demay C, Liens B, Burguière T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N (2012) SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infection, Genetics and Evolution 12:755–766CrossRefPubMedGoogle Scholar
  15. Dou HY, Tseng FC, Lin CW, Chang JR, Sun JR, Tsai WS, Lee SY, Su IJ, Lu JJ (2008) Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei. BMC Infect Dis 8:170CrossRefPubMedCentralPubMedGoogle Scholar
  16. Drobniewski F, Balabanova Y, Nikolayevsky V, Ruddy M, Kuznetzov S, Zakharova S, Melentyev A, Fedorin I (2005) Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA 293:2726–2731CrossRefPubMedGoogle Scholar
  17. European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis (2006) Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis 12:736–743CrossRefPubMedCentralGoogle Scholar
  18. Faksri K, Drobniewski F, Nikolayevskyy V, Brown T, Prammananan T, Palittapongarnpim P, Prayoonwiwat N, Chaiprasert A (2011) Genetic diversity of the Mycobacterium tuberculosis Beijing family based on IS6110, SNP, LSP and VNTR profiles from Thailand. Infect Genet Evol 11:1142–1149CrossRefPubMedGoogle Scholar
  19. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbon MH, Bobadilla del Valle M, Fyfe J, Garcia-Garcia L, Rastogi N, Sola C, Zozio T, Guerrero MI, Leon CI, Crabtree J, Angiuoli S, Eisenach KD, Durmaz R, Joloba ML, Rendon A, Sifuentes-Osornio J, Ponce de Leon A, Cave MD, Fleischmann R, Whittam TS, Alland D (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188:759–772CrossRefPubMedCentralPubMedGoogle Scholar
  20. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45:784–790CrossRefPubMedCentralPubMedGoogle Scholar
  21. Gagneux S (2009) Fitness cost of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 15(Suppl 1):66–68CrossRefPubMedGoogle Scholar
  22. Gagneux S, Burgos MV, DeRiemer K, Encisco A, Munoz S, Hopewell PC, Small PM, Pym AS (2006a) Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2:e61CrossRefPubMedCentralPubMedGoogle Scholar
  23. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ (2006b) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312:1944–1946CrossRefPubMedGoogle Scholar
  24. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375:1830–1843CrossRefPubMedGoogle Scholar
  25. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8:843–849CrossRefPubMedCentralPubMedGoogle Scholar
  26. Golesi F, Brignatz J, Bellenfant M, Raoult D, Drancourt M (2013) Mycobacterium tuberculosis Beijing outbreak in a school in Marseille, France, 2012. Euro Surveill 18:20354PubMedGoogle Scholar
  27. Gumbo T (2010) New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother 54:1484–1491CrossRefPubMedCentralPubMedGoogle Scholar
  28. Ioerger TR, Feng Y, Chen X, Dobos KM, Victor TC, Streicher EM, Warren RM, Gey van Pittius NC, Van Helden PD, Sacchettini JC (2010) The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genom 11:670CrossRefGoogle Scholar
  29. Iwamoto T, Grandjean L, Arikawa K, Nakanishi N, Caviedes L, Coronel J, Sheen P, Wada T, Taype CA, Shaw MA, Moore DA, Gilman RH (2012) Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLoS One 7:e49651CrossRefPubMedCentralPubMedGoogle Scholar
  30. Jiraphongsa C, Wangteeraprasert T, Henpraserttae N, Sanguanwongse N, Panya L, Sukkasitvanichkul J, Pittayawonganon C (2011) Community outbreak of multidrug resistance tuberculosis, Kanchanaburi province, Thailand on 2002–June 2010. J Preventive Med Assoc Thail 1:261–271Google Scholar
  31. Johnson R, Jordaan AM, Pretorius L, Engelke E, van der Spuy G, Kewley C, Bosman M, van Helden PD, Warren R, Victor TC (2006) Ethambutol resistance testing by mutation detection. Int J Tuberc Lung Dis 10:68–73Google Scholar
  32. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914PubMedCentralPubMedGoogle Scholar
  33. Kato-Maeda M, Ho C, Passarelli B, Banaei N, Grinsdale J, Flores L, Anderson J, Murray M, Rose G, Kawamura LM, Pourmand N, Tariq MA, Gagneux S, Hopewell PC (2013) Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One 8:e58235CrossRefPubMedCentralPubMedGoogle Scholar
  34. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576CrossRefPubMedCentralPubMedGoogle Scholar
  35. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedCentralPubMedGoogle Scholar
  36. Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs WRJ (2007) Genetic Manipulation of Mycobacterium tuberculosis. Curr Protoc Microbiol Chapter 10:Unit 10A 12Google Scholar
  37. Lee AS, Othman SN, Ho YM, Wong SY (2004) Novel mutations within the embB gene in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:4447–4449CrossRefPubMedCentralPubMedGoogle Scholar
  38. Li XZ, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423CrossRefPubMedCentralPubMedGoogle Scholar
  39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079CrossRefPubMedCentralPubMedGoogle Scholar
  40. Liu F, Hu Y, Wang Q, Li HM, Gao GF, Liu CH, Zhu B (2014) Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genom 15:469CrossRefGoogle Scholar
  41. Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, Jin X, Hong J, Li F, Mei J, DeRiemer K, Gao Q (2014) Whole-genome sequencing to detect recent transmission of Mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis 94:434–440CrossRefPubMedCentralPubMedGoogle Scholar
  42. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rusch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, Niemann S (2013) Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 8:e82551CrossRefPubMedCentralPubMedGoogle Scholar
  43. Muller B, Borrell S, Rose G, Gagneux S (2013) The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29:160–169CrossRefPubMedCentralPubMedGoogle Scholar
  44. Naidoo CC, Pillay M (2014) Increased in vitro fitness of multi- and extensively drug-resistant F15/LAM4/KZN strains of Mycobacterium tuberculosis. Clin Microbiol Infect 20:O361–O369CrossRefPubMedGoogle Scholar
  45. Nair J, Rouse DA, Bai GH, Morris SL (1993) The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol 10:521–527CrossRefPubMedGoogle Scholar
  46. Niemann S, Koser CU, Gagneux S, Plinke C, Homolka S, Bignell H, Carter RJ, Cheetham RK, Cox A, Gormley NA, Kokko-Gonzales P, Murray LJ, Rigatti R, Smith VP, Arends FP, Cox HS, Smith G, Archer JA (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4:e7407CrossRefPubMedCentralPubMedGoogle Scholar
  47. Niemann S, Diel R, Khechinashvili G, Gegia M, Mdivani N, Tang YW (2010) Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J Clin Microbiol 48:3544–3550CrossRefPubMedCentralPubMedGoogle Scholar
  48. Park YK, Ryoo SW, Lee SH, Jnawali HN, Kim CK, Kim HJ, Kim SJ (2012) Correlation of the phenotypic ethambutol susceptibility of Mycobacterium tuberculosis with embB gene mutations in Korea. J Med Microbiol 61:529–534CrossRefPubMedGoogle Scholar
  49. Parwati I, van Crevel R, van Soolingen D (2010) Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis 10:103–111CrossRefPubMedGoogle Scholar
  50. Perez-Lago L, Comas I, Navarro Y, Gonzalez-Candelas F, Herranz M, Bouza E, Garcia-de-Viedma D (2014) Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis 209:98–108CrossRefPubMedGoogle Scholar
  51. Pym AS, Saint-Joanis B, Cole ST (2002) Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun 70:4955–4960CrossRefPubMedCentralPubMedGoogle Scholar
  52. Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, El Sahly H, Moghazeh SL, Kreiswirth BN, Musser JM (2000) Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44:326–336CrossRefPubMedCentralPubMedGoogle Scholar
  53. Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, Wirth T, Jaenicke S, Schuback S, Rusch-Gerdes S, Supply P, Kalinowski J, Niemann S (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10:e1001387CrossRefPubMedCentralPubMedGoogle Scholar
  54. Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R, Alland D (2013) Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-beta-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 45:1190–1197CrossRefPubMedGoogle Scholar
  55. Sandegren L, Groenheit R, Koivula T, Ghebremichael S, Advani A, Castro E, Pennhag A, Hoffner S, Mazurek J, Pawlowski A, Kan B, Bruchfeld J, Melefors O, Kallenius G (2011) Genomic stability over 9 years of an isoniazid resistant Mycobacterium tuberculosis outbreak strain in Sweden. PLoS One 6:e16647CrossRefPubMedCentralPubMedGoogle Scholar
  56. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6:e2CrossRefPubMedGoogle Scholar
  57. Schon T, Jureen P, Giske CG, Chryssanthou E, Sturegard E, Werngren J, Kahlmeter G, Hoffner SE, Angeby KA (2009) Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother 64:786–793CrossRefPubMedGoogle Scholar
  58. Schurch AC, Kremer K, Daviena O, Kiers A, Boeree MJ, Siezen RJ, van Soolingen D (2010) High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin Microbiol 48:3403–3406CrossRefPubMedCentralPubMedGoogle Scholar
  59. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci 94:9869–9874CrossRefPubMedCentralPubMedGoogle Scholar
  60. Srilohasin P (2013) Development of a DNA chip and determination of genetic diversity of Mycobacterium tuberculosis in Thailand. Ph. D. Thesis, Mahidol UniversityGoogle Scholar
  61. Strauss OJ, Warren RM, Jordaan A, Streicher EM, Hanekom M, Falmer AA, Albert H, Trollip A, Hoosain E, van Helden PD, Victor TC (2008) Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. J Clin Microbiol 46:1514–1516CrossRefPubMedCentralPubMedGoogle Scholar
  62. Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, Zheng H, Tian W, Wang S, Barry CE 3rd, Mei J, Gao Q (2012) Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis 206:1724–1733CrossRefPubMedCentralPubMedGoogle Scholar
  63. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510CrossRefPubMedCentralPubMedGoogle Scholar
  64. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650CrossRefPubMedGoogle Scholar
  65. Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR Jr (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3:567–570CrossRefPubMedGoogle Scholar
  66. The WHO (2014) Global tuberculosis report 2014. World Health Organization, GenevaGoogle Scholar
  67. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192CrossRefPubMedCentralPubMedGoogle Scholar
  68. Toungoussova OS, Sandven P, Mariandyshev AO, Nizovtseva NI, Bjune G, Caugant DA (2002) Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast, Russia. J Clin Microbiol 40:1930–1937CrossRefPubMedCentralPubMedGoogle Scholar
  69. Toungoussova OS, Mariandyshev A, Bjune G, Sandven P, Caugant DA (2003) Molecular epidemiology and drug resistance of Mycobacterium tuberculosis isolates in the Archangel prison in Russia: predominance of the W-Beijing clone family. Clin Infect Dis 37:665–672CrossRefPubMedGoogle Scholar
  70. Tsolaki AG, Gagneux S, Pym AS, Goguet de la Salmoniere YO, Kreiswirth BN, Van Soolingen D, Small PM (2005) Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43:3185–3191CrossRefPubMedCentralPubMedGoogle Scholar
  71. van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, Qing HZ, Enkhsaikan D, Nymadawa P, van Embden JD (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33:3234–3238PubMedCentralPubMedGoogle Scholar
  72. van Soolingen D, de Haas PE, van Doorn HR, Kuijper E, Rinder H, Borgdorff MW (2000) Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. J Infect Dis 182:1788–1790CrossRefPubMedGoogle Scholar
  73. Viratyosin W, Kulawonganunchai S, Smittipat N, Juthayothin T, Penpassakarn P, Pasomsub E, Chantratita W, Chaiprasert A, Palittapongarnpim P (2013) Draft genome sequence of the Mycobacterium tuberculosis strain 43-16836, belonging to the Indo-Oceanic lineage, isolated from tuberculous meningitis in Thailand. Genome Announc 1Google Scholar
  74. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TE (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13:137–146CrossRefPubMedCentralPubMedGoogle Scholar
  75. Werngren J, Hoffner SE (2003) Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol 41:1520–1524CrossRefPubMedCentralPubMedGoogle Scholar
  76. WHO Geneva/IUATLD Paris (1998) Guidelines for surveillance of drug resistance in tuberculosis. WHO Geneva/IUATLD Paris. International Union Against Tuberculosis and Lung Disease. Int J Tuberc Lung Dis 2:72–89Google Scholar
  77. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sanjib Mani Regmi
    • 1
  • Angkana Chaiprasert
    • 1
    Email author
  • Supasak Kulawonganunchai
    • 2
  • Sissades Tongsima
    • 2
  • Olabisi Oluwabukola Coker
    • 1
  • Therdsak Prammananan
    • 2
  • Wasna Viratyosin
    • 2
  • Iyarit Thaipisuttikul
    • 1
  1. 1.Department of Microbiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  2. 2.National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand

Personalised recommendations