Molecular Genetics and Genomics

, Volume 290, Issue 3, pp 863–875 | Cite as

MiRNA expression profile and miRNA–mRNA integrated analysis (MMIA) during podocyte differentiation

  • Zhigui Li
  • Lifeng Wang
  • Jing Xu
  • Zhuo YangEmail author
Original Paper


The podocyte is a prominent cell type, which encases the capillaries of glomerulus. Podocyte-selective deletion of Dicer or Drosha was reported to induce proteinuria and glomerulosclerosis, suggesting the essential role of microRNA (miRNA) in podocytes for renal function. However, no comprehensive miRNA expression or miRNA–mRNA integrated analysis (MMIA) can be found during podocyte differentiation. Herein, miRNA and mRNA microarrays are presented, which were carried out in differentiated and undifferentiated mouse podocyte cell lines (MPC5). A total of 50 abnormal miRNAs (26 down-regulated and 24 up-regulated) were identified in differentiated and undifferentiated podocytes. Using MMIA, 80 of the 743 mRNAs (>twofold change) were predicted for potential crosstalk with 30 miRNAs of the 50 abnormal miRNAs. In addition, the gene ontology of mRNAs and the pathway analysis of miRNAs revealed a new potential-regulated network during podocyte differentiation. The expressions of three remarkably changed miRNAs (miR-34c, miR-200a and miR-467e) and four mRNAs (Runx1t1, Atp2a2, Glrp1, and Mmp15), were randomly chosen for further validation by the quantitative real-time polymerase chain reaction, and their expression trends were consistent with the microarray data. Reference searching was also conducted to confirm our data and to find potential new molecules and miRNA-target pairs involved in the podocyte differentiation. The dual luciferase reporter assay for miR-200a/GLRX and let-7b/ARL4D confirmed the prediction of MMIA. The results of this study provide a detailed integration of mRNA and miRNA during podocyte differentiation. The molecular integration mode will open up new perspectives for a better understanding of the mechanism during podocyte differentiation.


Differentiation MicroRNA MMIA mRNA Podocyte 



This work was supported by Grant from the National Basic Research Program of China (2011CB944003), the National Natural Science Foundation of China (31271074).

Conflict of interest

The authors confirm that there are no conflicts of interest.

Supplementary material

438_2014_960_MOESM1_ESM.xls (267 kb)
Supplementary material 1 (XLS 267 kb)
438_2014_960_MOESM2_ESM.xls (32 kb)
Supplementary material 2 (XLS 32 kb)
438_2014_960_MOESM3_ESM.xlsx (17 kb)
Supplementary material 3 (XLSX 17 kb)
438_2014_960_MOESM4_ESM.xls (871 kb)
Supplementary material 4 (XLS 871 kb)
438_2014_960_MOESM5_ESM.xls (168 kb)
Supplementary material 5 (XLS 168 kb)
438_2014_960_MOESM6_ESM.xls (54 kb)
Supplementary material 6 (XLS 53 kb)
438_2014_960_MOESM7_ESM.docx (14 kb)
Supplementary material 7 (DOCX 13 kb)
438_2014_960_MOESM8_ESM.doc (37 kb)
Supplementary material 8 (DOC 37 kb)


  1. Agrawal R, Tran U, Wessely O (2009) The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136(23):3927–3936PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355PubMedCrossRefGoogle Scholar
  3. Amiel J, de Pontual L, Henrion-Caude A (2012) miRNA, development and disease. Adv Genet 80:1PubMedCrossRefGoogle Scholar
  4. Bai X-Y, Ma Y, Ding R, Fu B, Shi S, Chen X-M (2011) miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22(7):1252–1261PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bhatt K, Mi Q-S, Dong Z (2011) MicroRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 300(3):F602PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chang C-J, Chao C-H, Xia W, Yang J-Y, Xiong Y, Li C-W, Yu W-H, Rehman SK, Hsu JL, Lee H-H (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chen C-Z, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86PubMedCrossRefGoogle Scholar
  11. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, Wang NS (2011) Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol 25(4):566–576CrossRefGoogle Scholar
  12. Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N (2009) Upregulation of miR-23a~27a~24-2 cluster induces caspase-dependent and-independent apoptosis in human embryonic kidney cells. PLoS One 4(6):e5848PubMedCentralPubMedCrossRefGoogle Scholar
  13. Choi PS, Zakhary L, Choi W-Y, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz RH (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57(1):41–55PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chow T-FF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Yousef GM (2010) Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 43(1):150–158PubMedCrossRefGoogle Scholar
  15. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122(1):6–7PubMedCrossRefGoogle Scholar
  16. Cui L, Zhou H, Zhao H, Zhou Y, Xu R, Xu X, Zheng L, Xue Z, Xia W, Zhang B (2012) MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer 12(1):546PubMedCentralPubMedCrossRefGoogle Scholar
  17. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652PubMedCrossRefGoogle Scholar
  18. Erson AE, Petty EM (2008) MicroRNAs in development and disease. Clin Genet 74(4):296–306PubMedCrossRefGoogle Scholar
  19. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, McManus MT, Benzing T, Miner JH (2008) Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 19(11):2150–2158PubMedCentralPubMedCrossRefGoogle Scholar
  20. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531PubMedCrossRefGoogle Scholar
  21. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 19(11):2069–2075PubMedCentralPubMedCrossRefGoogle Scholar
  22. Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, Yao X, Pan Z, Zhang P, Li J (2008) Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer 123(4):972–978PubMedCrossRefGoogle Scholar
  23. Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y (2012) Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int 81(3):280–292PubMedCrossRefGoogle Scholar
  24. Kahai S, Lee SC, Lee DY, Yang J, Li M, Wang CH, Jiang Z, Zhang Y, Peng C, Yang BB (2009) MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS One 4(10):e7535PubMedCentralPubMedCrossRefGoogle Scholar
  25. Karp X, Ambros V (2005) Developmental biology. Encountering microRNAs in cell fate signaling. Science 310(5752):1288–1289PubMedCrossRefGoogle Scholar
  26. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R (2011) A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int 80(4):358–368PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19(1):1–15PubMedCrossRefGoogle Scholar
  28. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon Y-J, Volinia S, Pineau P, Marchio A, Palatini J, Suh S-S (2011) p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208(5):875–883PubMedCentralPubMedCrossRefGoogle Scholar
  29. Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5(3):115–119PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kriz W, Gretz N, Lemley KV (1998) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54(3):687–697PubMedCrossRefGoogle Scholar
  31. Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J, Chowdhury D (2009) miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16(5):492–498PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefGoogle Scholar
  33. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMedCrossRefGoogle Scholar
  34. Lian H, Liu W, Liu Q, Jin H, Sun Y, Li J, Xia Z, Gao H (2010) A laboratory-attenuated vesicular stomatitis virus induces apoptosis and alters the cellular microRNA expression profile in BHK cells. Arch Virol 155(10):1643–1653PubMedCrossRefGoogle Scholar
  35. Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li P-F (2009) miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci 106(29):12103–12108PubMedCentralPubMedCrossRefGoogle Scholar
  36. Liu Y, Taylor NE, Lu L, Cowley AW, Ferreri NR, Yeo NC, Liang M (2010) Renal medullary microRNAs in Dahl salt-sensitive rats miR-29b regulates several collagens and related genes. Hypertension 55(4):974–982PubMedCentralPubMedCrossRefGoogle Scholar
  37. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23(2):287–295PubMedCrossRefGoogle Scholar
  38. Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18(9):975–980PubMedCentralPubMedCrossRefGoogle Scholar
  39. Meister G (2007) miRNAs get an early start on translational silencing. Cell 131(1):25–28PubMedCrossRefGoogle Scholar
  40. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011PubMedCrossRefGoogle Scholar
  41. Meyer TW, Bennett PH, Nelson RG (1999) Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 42(11):1341–1344PubMedCrossRefGoogle Scholar
  42. Mundel P, Reiser J, Zuniga Mejia Borja A, Pavenstadt H, Davidson GR, Kriz W, Zeller R (1997) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236(1):248–258PubMedCrossRefGoogle Scholar
  43. Nagalakshmi VK, Ren Q, Pugh MM, Valerius MT, McMahon AP, Yu J (2011) Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 79(3):317–330PubMedCentralPubMedCrossRefGoogle Scholar
  44. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3):278–284PubMedCrossRefGoogle Scholar
  45. Peter ME (2009) Let-7 and miR-200 microRNAs. Cell Cycle 8(6):843–852PubMedCentralPubMedCrossRefGoogle Scholar
  46. Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA (2011) miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31(15):3182–3194PubMedCentralPubMedCrossRefGoogle Scholar
  47. Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18(4):317–323PubMedCrossRefGoogle Scholar
  48. Saikumar J, Hoffmann D, Kim T-M, Gonzalez VR, Zhang Q, Goering PL, Brown RP, Bijol V, Park PJ, Waikar SS (2012) Expression, circulation, and excretion profile of microRNA-21,-155, and-18a following acute kidney injury. Toxicol Sci 129(2):256–267PubMedCentralPubMedCrossRefGoogle Scholar
  49. Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69(12):2131–2147PubMedCrossRefGoogle Scholar
  50. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, Merkenschlager M, Holzman LB, Zhang W, Mundel P, Bottinger EP (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19(11):2159–2169PubMedCentralPubMedCrossRefGoogle Scholar
  51. Tang O, Chen X-M, Shen S, Hahn M, Pollock CA (2013) MiRNA-200b represses transforming growth factor-β1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am J Physiol Renal Physiol 304(10):F1266–F1273PubMedCrossRefGoogle Scholar
  52. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M (2008) MicroRNA–target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18(3):404–411PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tsz-fung FC, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, Metias S, Rofael Y, Honey RJ, Stewart R (2010) The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol 183(2):743–751CrossRefGoogle Scholar
  54. Vaughan MR, Pippin JW, Griffin SV, Krofft R, Fleet M, Haseley L, Shankland SJ (2005) ATRA induces podocyte differentiation and alters nephrin and podocin expression in vitro and in vivo. Kidney Int 68(1):133–144PubMedCrossRefGoogle Scholar
  55. Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H, Liedberg F, Chebil G, Gudjonsson S, Borg Å (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124(9):2236–2242PubMedCrossRefGoogle Scholar
  56. Vogt M, Munding J, Grüner M, Liffers S-T, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A, Hermeking H (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322PubMedCrossRefGoogle Scholar
  57. Wang L, Oberg AL, Asmann YW, Sicotte H, McDonnell SK, Riska SM, Liu W, Steer CJ, Subramanian S, Cunningham JM (2009) Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS One 4(6):e5878PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME (2011) miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 60(1):280–287PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wessely O, Agrawal R, Tran U (2010) MicroRNAs in kidney development: lessons from the frog. RNA Biol 7(3):296–299PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283(15):9836–9843PubMedCrossRefGoogle Scholar
  61. Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J (2012a) The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 302(3):F369–F379PubMedCrossRefGoogle Scholar
  62. Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J (2012b) The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 302(3):F369–F379PubMedCrossRefGoogle Scholar
  63. Yi Z, Fu Y, Zhao S, Zhang X, Ma C (2010) Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol 136(6):855–862PubMedCrossRefGoogle Scholar
  64. Zhdanova O, Srivastava S, Di L, Li Z, Tchelebi L, Dworkin S, Johnstone DB, Zavadil J, Chong MM, Littman DR, Holzman LB, Barisoni L, Skolnik EY (2011) The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int 80(7):719–730PubMedCentralPubMedCrossRefGoogle Scholar
  65. Zitman-Gal T, Green J, Pasmanik-Chor M, Golan E, Bernheim J, Benchetrit S (2014) Vitamin D manipulates miR-181c, miR-20b and miR-15a in human umbilical vein endothelial cells exposed to a diabetic-like environment. Cardiovasc Diabetol 13(1):8PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular RegulationNankai UniversityTianjinChina

Personalised recommendations