Skip to main content
Log in

Genetic analysis of root morphological traits in wheat

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. ‘Creso’ × ‘Pedroso’ were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the ‘Creso’ × ‘Pedroso’ cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the ‘Creso’ × ‘Pedroso’ segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the ‘Creso’ × ‘Pedroso’ durum-wheat population has revealed some QTL that had not been previously identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64(6):1745–1753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bostick M, Lochhead SR, Honda A, Palmer S, Callis J (2004) Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell 16:2418–2432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewster JL, Tinker PB (1970) Nutrient cation flows in soil around plant roots. Proc Soil Sci Soc Am 34:421–426

    Article  CAS  Google Scholar 

  • Cai H, Chen F, Mi G, Zhang F, Maurer HP, Liu W, Reif JC, Yuan L (2012) Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theor Appl Genet 125(6):1313–1324

    Article  PubMed  Google Scholar 

  • Carley HE, Watson RD (1966) A new gravimetric method for estimating root-surface areas. Soil Sci 102:289–291

    Article  Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Bucciarelli B, Shen J, Allan DL, Vance CP (2011a) Update on white lupin cluster roots acclimation to phosphorus deficiency. Plant Physiol 156:1025–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP (2011b) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi AM, Jordan D, Mace E, Hammer G (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet 126:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A, Ahmadi N, Dingkuhn M (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8(11):e78037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cowan IR (1965) Transport of water in the soil–plant–atmosphere system. J Appl Ecol 2:221–239

    Article  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui K, Huang J, Xing Y, Yu S, Xu C, Peng S (2008) Mapping QTLs for seedling characteristics under different water supply conditions in rice (Oryza sativa). Physiol Plant 132:1–53

    CAS  Google Scholar 

  • Dang X, Thi TG, Dong G, Wang H, Edzesi WM, Hong D (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239(6):1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • De Vita P, Nicosia OLD, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26:39–53

    Article  Google Scholar 

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Fitz Gerald JN, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    Article  CAS  PubMed  Google Scholar 

  • Gomez MS, Kumar SS, Jeyaprakash P, Suresh R, Biji KR, Boopathi NM, Price AH, Babu RC (2006) Mapping QTLs linked to physio-morphological and plant production traits under drought stress in rice in the target environment. Am J Biochem Biotechnol 2(4):161–169

    Article  Google Scholar 

  • Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922–929

    Article  Google Scholar 

  • Guo Y, Kong FM, Xu YF, Zhao Y, Liang X, Wang YY, An DG, Li SS (2012) QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124:851–865

    Article  CAS  PubMed  Google Scholar 

  • Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y (2012) Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil 354:395–405

    Article  CAS  Google Scholar 

  • Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Harper JL, Jones M, Hamilton NR (1991) The evolution of roots and the problems of analyzing their behavior. In: Atkinson D (ed) Plant root growth. An ecological perspective. Blackwell, Oxford, pp 3–24

    Google Scholar 

  • Ho MD, McCannon BC, Lynch JP (2004) Optimization modeling of plant root architecture for water and phosphorus acquisition. J Theor Biol 226:331–340

    Article  CAS  PubMed  Google Scholar 

  • Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorous acquisition. Funct Plant Biol 32:737–748

    Article  CAS  Google Scholar 

  • Hund A, Richner W, Soldati A, Fracheboud Y, Stamp P (2007) Root morphology and photosynthetic performance of maize inbred lines at low temperature. Eur J Agron 27:52–61

    Article  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Stamp P (2008) Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. Eur J Agron 28:178–185

    Article  CAS  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize: I development of a phenotyping platform. Plant Soil 325:335–349

    Article  CAS  Google Scholar 

  • Ibrahim SE, Schubert A, Pillen K, Léon J (2012) QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. Intern J Agric Sci 2:619–629

    Google Scholar 

  • Jahufer MZZ, Nichols SN, Crush JR, Ouyang L, Dunn A, Ford JL, Care DA, Griffiths AG, Jones CS, Jones CG (2008) Genotypic variation for root trait morphology in a white clover mapping population grown in sand. Crop Sci 48:487–494

    Article  Google Scholar 

  • Jasoni RL, Cothren JT, Morgan PW, Sohan DE (2002) Circadian ethylene production in cotton. Plant Growth Regul 36(2):31–37

    Article  Google Scholar 

  • Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, St. Clair DA, Michelmore RW (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    Article  CAS  Google Scholar 

  • Jones M, Raymond M, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  CAS  PubMed  Google Scholar 

  • Kara Y, Martín A, Souyris I, Rekika D, Monneveux P (2000) Root characteristics in durum wheat (T. turgidum conv. durum) and some wild Triticeae species. Genetic variation and relationship with plant architecture. Cereal Res Commun 28(3):247–254

    Google Scholar 

  • Kato Y, Okami M, Tajima R, Fujita D, Kobayashi N (2010) Root response to aerobic conditions in rice, estimated by Comair root length scanner and scanner-based image analysis. Field Crop Res 118:194–198

    Article  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubo K, Elouafi I, Watanabe N, Nachit MM, Inagaki MN, Iwama K, Jitsuyama Y (2007) Quantitative trait loci for soil-penetrating ability of roots in durum wheat. Plant Breed 126:375–378

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed Central  PubMed  Google Scholar 

  • Landi P, Sanguineti MC, Darrah L, Giuliani M, Salvi S, Tuberosa R (2002) Detection of QTLs for vertical root pulling resistance in maize and overlaps with QTLs for root traits in hydroponics and for grain yield at different water regimes. Maydica 47:233–243

    Google Scholar 

  • Landi P, Sanguineti MC, Salvi S, Giuliani S, Bellotti M, Maccaferri M, Conti S, Tuberosa R (2005) Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Mol Breed 15:291–303

    Article  CAS  Google Scholar 

  • Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  CAS  PubMed  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Li Z, Peng T, Zhang WD, Xie QG, Tian JC (2010) Analysis of QTLs for root traits at seedling stage using an “immortalized F2” population of wheat. Acta Agronomica Sinica 36(3):442–448

    Article  CAS  Google Scholar 

  • Liang YS, Zhan XD, Wang HM, Gao ZQ, Zc Lin, Chen DB, Shen XH, Cao LY, Cheng SH (2013) Locating QTLs controlling several adult root traits in an elite Chinese hybrid rice. Gene 526(2):331–335

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Chen F, Zhang F, Ren T, Zhuang Z, Mi G (2008) Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil 305:253–265

    Article  CAS  Google Scholar 

  • Liu X, Li R, Chang X, Jing R (2013) Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 189(1):51–66

    Article  Google Scholar 

  • López-Marín HD, Rao IM, Blair MW (2009) Quantitative trait loci for root morphology traits under aluminum stress in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119(3):449–458

    Article  PubMed  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Araus Ortega JL, Salern MB, Bort J, DeAmbrogio E, del Moral LG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit MM, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed Central  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals non-random distribution of QTL and of gene rich regions with significant implications for crop improvement. Theor Appl Genet 123(1):169–191

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124(1):97–109

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Manschadi A, Hammer G, Chrisptopher J, DeVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • Marone D, Panio G, Ficco DBM, Russo MA, De Vita P, Papa R, Rubiales D, Cattivelli L, Mastrangelo AM (2012a) Characterization of wheat DArT markers: genetic and functional features. Mol Genet Genom 287:741–753

    Article  CAS  Google Scholar 

  • Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012b) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125(8):1619–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genom 14:562

    Article  CAS  Google Scholar 

  • Mergner J, Schwechheimer C (2014) The NEDD8 modification pathway in plants. Front Plant Sci 5:103

    Article  PubMed Central  PubMed  Google Scholar 

  • Murphy SL, Smucker AJM (1995) Evaluation of video image analysis and line-intercept methods for measuring root systems of alfalfa and ryegrass. Agron J 87:865–868

    Article  Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    Article  CAS  Google Scholar 

  • Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, Han X, Zhang Z, Yan J, Zheng Y, Yue B, Qiu F (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 8(11):e79305

    Article  PubMed Central  PubMed  Google Scholar 

  • Passioura JB (1972) The effect of root geometry on the yield of wheat growing on stored water. Aust J Agric Res 23:745–752

    Article  Google Scholar 

  • Price AH, Tomos AD, Virk DS (1997) Genetic dissection of root growth in rice (Oryza sativa L.) I: a hydrophonic screen. Theor Appl Genet 95:132–142

    Article  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002a) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Steele KA, Gorham J, Bridges JM, Moore BJ, Evans JL, Richardson P, Jones RGW (2002b) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. I. Root distribution, water use and plant water status. Field Crop Res 76:11–24

    Article  Google Scholar 

  • Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SM, Pervez A, Shah MM (2011) Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res 10(2):889–901

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, He X, Liu D, Li J, Zhao X, Li B, Tong Y, Zhang A, Li Z (2012) Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol Breeding 30:139–148

    Article  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Betran J, Monneveux P, Setter T (2009) Drought tolerance in maize. Handbook of maize: its biology. pp. 311–344

  • Román-Avilés B, Snapp SS, Kelly JD (2004) Assessing root traits associated with root rot resistance in common bean. Field Crop Res 86:147–156

    Article  Google Scholar 

  • Sandhu N, Jain S, Kumar A, Mehla BS, Jain R (2013) Genetic variation, linkage mapping of QTL and correlation studies for yield, root, and agronomic traits for aerobic adaptation. BMC Genet 14:104

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R (2007) Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol 151:291–305

    Article  Google Scholar 

  • Sayar R, Khemira H, Kharrat M (2007) Inheritance of deeper root length and grain yield in half-diallel durum wheat (Triticum durum Desf.) crosses. Ann Appl Biol 151:213–220

    Article  Google Scholar 

  • Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewski AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759–769

    Article  PubMed Central  PubMed  Google Scholar 

  • Somers JD, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis ME, Moore C, Richards RA (2007) A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theor Appl Genet 115:59–66

    Article  CAS  PubMed  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  CAS  PubMed  Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101:180–186

    Article  Google Scholar 

  • Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM, Virk DS (2013) QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor Appl Genet 126:101–108

    Article  CAS  PubMed  Google Scholar 

  • Taramino G, Sauer M, Stauffer J, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and postembryonic shoot-borne root initiation. Plant J 50:649–659

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002a) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002b) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot (Lond) 89:941–963

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, Software for the mapping of quantitative trait loci in experimental . Kyazma B.V, The Netherlands

    Google Scholar 

  • Wang Y, Ribot C, Rezzonico E, Poirier Y (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol 135:400–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121(1):181–193

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Chen GY (2013) Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springer Plus 2:245

  • Zhang KP, Tian JC, Zhao L, Wang SS (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007

    Article  PubMed  Google Scholar 

  • Zhang H, Wang FL, Ding JA, Zhao C, Bao Y, Yang Q, Wang H (2013) Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet 92(2):213–231

    Article  PubMed  Google Scholar 

  • Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, Yang SX, Odinga MM, Wei SP, Liu XF, Zhang YM (2014) Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 9(1):e84750

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS, Ali L, Huang N, Courtois B, Nguyen HT (2000) Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61

    Article  CAS  PubMed  Google Scholar 

  • Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762

    Article  CAS  Google Scholar 

  • Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14(3):310–317

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education, Universities and Research (MIUR), with the special grants AGROGEN and ISCOCEM. We are grateful to V. Giovanniello for her technical support in assessment of phenotypic data. We are grateful to Dr. Christopher Berrie for scientific English language editorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Mastrangelo.

Additional information

Communicated by S. Hohmann.

M. Petrarulo and D. Marone contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 45 kb)

Supplementary material 2 (XLS 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrarulo, M., Marone, D., Ferragonio, P. et al. Genetic analysis of root morphological traits in wheat. Mol Genet Genomics 290, 785–806 (2015). https://doi.org/10.1007/s00438-014-0957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0957-7

Keywords

Navigation