Advertisement

Molecular Genetics and Genomics

, Volume 289, Issue 6, pp 1045–1060 | Cite as

Whole-genome duplication in teleost fishes and its evolutionary consequences

  • Stella M. K. Glasauer
  • Stephan C. F. NeuhaussEmail author
Review

Abstract

Whole-genome duplication (WGD) events have shaped the history of many evolutionary lineages. One such duplication has been implicated in the evolution of teleost fishes, by far the most species-rich vertebrate clade. After initial controversy, there is now solid evidence that such event took place in the common ancestor of all extant teleosts. It is termed teleost-specific (TS) WGD. After WGD, duplicate genes have different fates. The most likely outcome is non-functionalization of one duplicate gene due to the lack of selective constraint on preserving both. Mechanisms that act on preservation of duplicates are subfunctionalization (partitioning of ancestral gene functions on the duplicates), neofunctionalization (assigning a novel function to one of the duplicates) and dosage selection (preserving genes to maintain dosage balance between interconnected components). Since the frequency of these mechanisms is influenced by the genes’ properties, there are over-retained classes of genes, such as highly expressed ones and genes involved in neural function. The consequences of the TS-WGD, especially its impact on the massive radiation of teleosts, have been matter of controversial debate. It is evident that gene duplications are crucial for generating complexity and that WGDs provide large amounts of raw material for evolutionary adaptation and innovation. However, it is less clear whether the TS-WGD is directly linked to the evolutionary success of teleosts and their radiation. Recent studies let us conclude that TS-WGD has been important in generating teleost complexity, but that more recent ecological adaptations only marginally related to TS-WGD might have even contributed more to diversification. It is likely, however, that TS-WGD provided teleosts with diversification potential that can become effective much later, such as during phases of environmental change.

Keywords

Gene pairs Paralogue Subfunctionalization Neofunctionalization Radiation 

Notes

Acknowledgments

We acknowledge funding from the Swiss National Science Foundation (31003A_135598).

Supplementary material

438_2014_889_MOESM1_ESM.tif (46 kb)
Supplementary material 1 (TIFF 45 kb)

References

  1. Ahn BY, Dornfeld KJ, Fagrelius TJ, Livingston DM (1988) Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol Cell Biol 8:2442–2448PubMedCentralPubMedGoogle Scholar
  2. Alexandrou MA, Swartz BA, Matzke NJ, Oakley TH (2013) Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae. Mol Phylogenet Evol 69:514–523PubMedGoogle Scholar
  3. Alfaqih MA, Steele CA, Morris RT, Thorgaard GH (2009) Comparative genome mapping reveals evidence of gene conversion between Sox9 paralogs of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part D Genomics Proteomics 4:147–153PubMedGoogle Scholar
  4. Allendorf FW (1978) Protein polymorphism and the rate of loss of duplicate gene expression. Nature 272:76–78PubMedGoogle Scholar
  5. Alves G (1999) Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes. J Exp Biol 202:1167–1183Google Scholar
  6. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714PubMedGoogle Scholar
  7. Aparicio S, Hawker K, Cottage A, Mikawa Y, Zuo L, Venkatesh B, Chen E, Krumlauf R, Brenner S (1997) Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16:79–83PubMedGoogle Scholar
  8. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke M, Roach J, Oh T, Ho I, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith S, Clark M, Edwards Y, Doggett N, Zharkikh A, Tavtigian S, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan Y, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310PubMedGoogle Scholar
  9. Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system—twice. Proc Natl Acad Sci USA 107:22172–22177PubMedCentralPubMedGoogle Scholar
  10. Arratia G (1997) Basal teleosts and teleostean phylogeny. München, PfeilGoogle Scholar
  11. Aury J-M, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Segurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Camara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller A-M, Kissmehl R, Klotz C, Koll F, Le Mouel A, Lepere G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Betermier M, Weissenbach J, Scarpelli C, Schachter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178PubMedGoogle Scholar
  12. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358PubMedCentralPubMedGoogle Scholar
  13. Bargelloni L, Scudiero R, Parisi E, Carginale V, Capasso C, Patarnello T (1999) Metallothioneins in antarctic fish: evidence for independent duplication and gene conversion. Mol Biol Evol 16:885–897PubMedGoogle Scholar
  14. Barkman T, Zhang J (2009) Evidence for escape from adaptive conflict? Nature 462:E1; discussion E2-3PubMedGoogle Scholar
  15. Blomme T, Vandepoele K, de Bodt S, Simillion C, Maere S, de Peer Van, Yves (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43PubMedCentralPubMedGoogle Scholar
  16. Braasch I, Salzburger W, Meyer A (2006) Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration. Mol Biol Evol 23:1192–1202PubMedGoogle Scholar
  17. Brunet FG, Roest Crollius H, Paris M, Aury J-M, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23:1808–1816PubMedGoogle Scholar
  18. Canestro C, Albalat R, Irimia M, Garcia-Fernandez J (2013) Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 24:83–94PubMedGoogle Scholar
  19. Carroll SB (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell 101:577–580PubMedGoogle Scholar
  20. Chain Frederic J J, Dushoff J, Evans BJ (2011) The odds of duplicate gene persistence after polyploidization. BMC Genom 12:599Google Scholar
  21. Chambers KE, McDaniell R, Raincrow JD, Deshmukh M, Stadler PF, Chiu C-H (2009) Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory Biosci 128:109–120PubMedCentralPubMedGoogle Scholar
  22. Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775PubMedGoogle Scholar
  23. Chen J-Q, Wu Y, Yang H, Bergelson J, Kreitman M, Tian D (2009) Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. Mol Biol Evol 26:1523–1531PubMedGoogle Scholar
  24. Christoffels A (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of Ray-Finned fishes. Mol Biol Evol 21:1146–1151PubMedGoogle Scholar
  25. Collery R, McLoughlin S, Vendrell V, Finnegan J, Crabb JW, Saari JC, Kennedy BN (2008) Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE-and Muller-CRALBP in cone vision. Invest Ophthalmol Vis Sci 49:3812–3820PubMedGoogle Scholar
  26. Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3:129PubMedCentralPubMedGoogle Scholar
  27. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950PubMedGoogle Scholar
  28. Cusack BP, Wolfe, KH (2007) When gene marriages don't work out: divorce by subfunctionalization. Trends Genet 23:270–272PubMedGoogle Scholar
  29. David L, Blum S, Feldman MW, Lavi U, Hillel J (2003) Recent duplication of the common carp (Cyprinus caprio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425–1434PubMedGoogle Scholar
  30. de Souza Flavio S J, Bumaschny VF, Low MJ, Rubinstein M (2005) Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes. Mol Biol Evol 22:2417–2427PubMedGoogle Scholar
  31. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314PubMedCentralPubMedGoogle Scholar
  32. Deng C, Cheng C-HC, Ye H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA 107:21593–21598PubMedCentralPubMedGoogle Scholar
  33. DesMarais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765Google Scholar
  34. Di Donato V, Auer TO, Duroure K, Del Bene F (2013) Characterization of the calcium binding protein family in zebrafish. PLoS ONE 8:e53299PubMedCentralPubMedGoogle Scholar
  35. Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y (2008) The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? BMC Evol Biol 8:336PubMedCentralPubMedGoogle Scholar
  36. Drouin G (2002) Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol 55:14–23PubMedGoogle Scholar
  37. Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101PubMedCentralPubMedGoogle Scholar
  38. Fawcett JA, Maere S, de Peer Van, Yves (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742PubMedCentralPubMedGoogle Scholar
  39. Ferris SD, Whitt GS (1977a) Duplicate gene expression in diploid and tetraploid loaches (Cypriniformes, Cobitidae). Biochem Genet 15:1097–1112PubMedGoogle Scholar
  40. Ferris SD, Whitt GS (1977b) The evolution of duplicate gene expression in the carp (Cyprinus carpio). Experientia 33:1299–1301Google Scholar
  41. Finn RN, Kristoffersen BA (2007) Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS ONE 2:e169PubMedCentralPubMedGoogle Scholar
  42. Finn RN, Ostby GC, Norberg B, Fyhn HJ (2002) In vivo oocyte hydration in Atlantic halibut (Hippoglossus hippoglossus); proteolytic liberation of free amino acids, and ion transport, are driving forces for osmotic water influx. J Exp Biol 205:211–224PubMedGoogle Scholar
  43. Fleisch VC, Neuhauss SC (2010) Parallel visual cycles in the zebrafish retina. Prog Retin Eye Res 29:476–486PubMedGoogle Scholar
  44. Fleisch VC, Schonthaler HB, von Lintig J, Stephan Neuhauss CF (2008) Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J Neurosci 28:8208–8216PubMedGoogle Scholar
  45. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedCentralPubMedGoogle Scholar
  46. Freeling M (2008) The evolutionary position of subfunctionalization, downgraded. Genome Dyn 4:25–40PubMedGoogle Scholar
  47. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453PubMedGoogle Scholar
  48. Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814PubMedGoogle Scholar
  49. Froese R, Pauly D (2013). FishBase. www.fishbase.org, version (12/2013)
  50. Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Kohler N (1999) Discovery of tetraploidy in a mammal. Nature 401:341PubMedGoogle Scholar
  51. Gallardo MH, Klausel G, Jiménez Al, Bacquet C, González C, Figueroa J, Köhler N, Ojeda R (2004) Whole-genome duplications in South American desert rodents (Octodontidae). Biol J Linn Soc 82:443–451Google Scholar
  52. Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST, Lashkari D, Abagyan R, Schier AF, Talbot WS (1999) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res 9:334–347PubMedGoogle Scholar
  53. Gerrard DT, Meyer A (2007) Positive selection and gene conversion in SPP120, a fertilization-related gene, during the East African cichlid fish radiation. Mol Biol Evol 24:2286–2297PubMedGoogle Scholar
  54. Gesemann M, Lesslauer A, Maurer CM, Schönthaler HB, Stephan Neuhauss CF (2010) Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evol Biol 10:117PubMedCentralPubMedGoogle Scholar
  55. Gout J-F, Kahn D, Duret L (2010) The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet 6:e1000944PubMedCentralPubMedGoogle Scholar
  56. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35:D332–D338PubMedCentralPubMedGoogle Scholar
  57. Guo B, Gan X, He S (2009) Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. J Exp Zool 9999B, n/aGoogle Scholar
  58. Guo B, Zou M, Wagner A (2012) Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication. Mol Biol Evol 29:3005–3022PubMedGoogle Scholar
  59. Hakes L, Pinney JW, Lovell SC, Oliver SG, Robertson DL (2007) All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biol 8:R209PubMedCentralPubMedGoogle Scholar
  60. Hartley S (1986) The chromosomes of salmonid fishes. Biol Rev 62:197–214Google Scholar
  61. Haug MF, Gesemann M, Mueller T, Stephan Neuhauss CF (2013) Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J Comp Neurol 521:1533–1560PubMedGoogle Scholar
  62. Henkel CV, Burgerhout E, de Wijze DL, Dirks RP, Minegishi Y, Jansen HJ, Spaink HP, Dufour S, Weltzien F-A, Tsukamoto K, van den Thillart GEEJM, Schubert M (2012) Primitive duplicate hox clusters in the European Eel’s genome. PLoS ONE 7:e32231PubMedCentralPubMedGoogle Scholar
  63. Hoegg S, Meyer A (2007) Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact? BMC Evol Biol 7:139PubMedCentralPubMedGoogle Scholar
  64. Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016PubMedGoogle Scholar
  65. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch G-J, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel J-H, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Eliott D, Threadgold G, Harden G, Ware D, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Carter NP, Harrow J, Ning Z, Herrero J, Steve Searle MJ, Enright A, Geisler R, Ronald Plasterk HA, Lee C, Westerfield M, de Jong Pieter J, Zon LI, Postlethwait JH, Nusslein-Volhard C, Tim Hubbard JP, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503PubMedCentralPubMedGoogle Scholar
  66. Huang R, Hippauf F, Rohrbeck D, Haustein M, Wenke K, Feike J, Sorrelle N, Piechulla B, Barkman TJ (2012) Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc Natl Acad Sci USA 109:2966–2971PubMedCentralPubMedGoogle Scholar
  67. Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G (2009) Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention. Genome Res 19:2036–2051PubMedCentralPubMedGoogle Scholar
  68. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119–124PubMedGoogle Scholar
  69. Innan H (2009) Population genetic models of duplicated genes. Genetica 137:19–37PubMedGoogle Scholar
  70. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:4Google Scholar
  71. Jaillon O, Aury J, Brunet F, Petit J, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, de Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau J, Gouzy J, Parra G, Lardier G, Chapple C, McKernan K, McEwan P, Bosak S, Kellis M, Volff J, Guigó R, Zody M, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander E, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedGoogle Scholar
  72. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedGoogle Scholar
  73. Jiang H, Blouin C (2007) Insertions and the emergence of novel protein structure: a structure-based phylogenetic study of insertions. BMC Bioinformatics 8:444PubMedCentralPubMedGoogle Scholar
  74. Jimenez-Delgado S, Pascual-Anaya J, Garcia-Fernandez J (2009) Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty. Brief Funct Genomic Proteomic 8:266–275PubMedGoogle Scholar
  75. Johnson KR, Wright JE Jr, May B (1987) Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579–591PubMedCentralPubMedGoogle Scholar
  76. Jovelin R, He X, Amores A, Yan Y-L, Shi R, Qin B, Roe B, Cresko WA, Postlethwait JH (2007) Duplication and divergence of fgf8 functions in teleost development and evolution. J Exp Zool B Mol Dev Evol 308:730–743PubMedGoogle Scholar
  77. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S-I, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719PubMedGoogle Scholar
  78. Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19:1404–1418PubMedCentralPubMedGoogle Scholar
  79. Kastenhuber E, Gesemann M, Mickoleit M, Stephan Neuhauss CF (2013) Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Dev Dyn 242:1236–1249PubMedGoogle Scholar
  80. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624PubMedGoogle Scholar
  81. Kohn M, Hogel J, Vogel W, Minich P, Kehrer-Sawatzki H, Jennifer Graves AM, Hameister H (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22:203–210PubMedGoogle Scholar
  82. Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26:47–59PubMedGoogle Scholar
  83. La Fleur GJ Jr, Raldua D, Fabra M, Carnevali O, Denslow N, Wallace RA, Cerda J (2005) Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus. Biol Reprod 73:815–824Google Scholar
  84. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedCentralPubMedGoogle Scholar
  85. Lynch VJ, Wagner GP (2008) Resurrecting the role of transcription factor change in developmental evolution. Evolution 62:2131–2154PubMedGoogle Scholar
  86. Mable B (2004) ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol J Linn Soc 82:453–466Google Scholar
  87. Macqueen DJ, Johnston IA (2008) Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Dev Genes Evol 218:1–14PubMedGoogle Scholar
  88. Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci 281:20132881PubMedCentralPubMedGoogle Scholar
  89. Maere S, de Bodt S, Raes J, Casneuf T, van Montagu M, Kuiper M, de Peer Van, Yves (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459PubMedCentralPubMedGoogle Scholar
  90. Mansai SP, Innan H (2010) The power of the methods for detecting interlocus gene conversion. Genetics 184:517–527PubMedCentralPubMedGoogle Scholar
  91. Matsubara T, Ohkubo N, Andoh T, Sullivan CV, Hara A (1999) Two forms of vitellogenin, yielding two distinct lipovitellins, play different roles during oocyte maturation and early development of barfin flounder, Verasper moseri, a marine teleost that spawns pelagic eggs. Dev Biol 213:18–32PubMedGoogle Scholar
  92. McClintock JM, Carlson R, Mann DM, Prince VE (2001) Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471–2484PubMedGoogle Scholar
  93. McFarlane L, Svingen T, Braasch I, Koopman P, Schartl M, Wilhelm D (2011) Expansion of the Ago gene family in the teleost clade. Dev Genes Evol 221:95–104PubMedGoogle Scholar
  94. McGuigan K, Phillips PC, Postlethwait JH (2004) Evolution of sarcomeric myosin heavy chain genes: evidence from fish. Mol Biol Evol 21:1042–1056PubMedGoogle Scholar
  95. Misof BY, Wagner GP (1996) Evidence for four Hox clusters in the killifish Fundulus heteroclitus (teleostei). Mol Phylogenet Evol 5:309–322PubMedGoogle Scholar
  96. Mondragon-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 22:2444–2456PubMedGoogle Scholar
  97. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828PubMedCentralPubMedGoogle Scholar
  98. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703PubMedCentralPubMedGoogle Scholar
  99. Njolstad PR, Molven A, Hordvik I, Apold J, Fjose A (1988) Primary structure, developmentally regulated expression and potential duplication of the zebrafish homeobox gene ZF-21. Nucleic Acids Res 16:9097–9111PubMedCentralPubMedGoogle Scholar
  100. Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM (2004) Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res 14:354–366PubMedCentralPubMedGoogle Scholar
  101. Ohno S (1970a) Evolution by gene duplication. Springer, New YorkGoogle Scholar
  102. Ohno S (1970b) The enormous diversity in genome sizes of fish as a reflection of nature’s extensive experiments with gene duplication. Trans Am Fish Soc 99:120–130Google Scholar
  103. Ohno S, Muramoto J, Lawrence C, Atkin NB (1967) Diploid-tetraploid relationship among old-world members of the fish family Cyprinidae. Chromosoma 23:1–9Google Scholar
  104. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147PubMedGoogle Scholar
  105. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437PubMedGoogle Scholar
  106. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197PubMedGoogle Scholar
  107. Phillips R, Rab P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1–25PubMedGoogle Scholar
  108. Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, Koop BF, Danzmann RG, Davidson WS (2009) Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 10:46PubMedCentralPubMedGoogle Scholar
  109. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902PubMedGoogle Scholar
  110. Postlethwait J, Amores A, Cresko W, Singer A, Yan Y-L (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481–490PubMedGoogle Scholar
  111. Prince Y, Joly L, Ekker M, Ho R (1998) Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125:407–420PubMedGoogle Scholar
  112. Prohaska SJ, Stadler PF (2004) The duplication of the hox gene clusters in teleost fishes. Theory Biosci 23:89–110Google Scholar
  113. Putnam NH, Butts T, David Ferrier EK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu J-K, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong Pieter J, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Peter Holland WH, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedGoogle Scholar
  114. Renninger SL, Gesemann M, Stephan Neuhauss CF (2011) Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae. Eur J Neurosci 33:658–667PubMedGoogle Scholar
  115. Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876PubMedGoogle Scholar
  116. Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9:194PubMedCentralPubMedGoogle Scholar
  117. Sato Y, Hashiguchi Y, Nishida M (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol 9:127PubMedCentralPubMedGoogle Scholar
  118. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345PubMedGoogle Scholar
  119. Scannell DR, Butler G, Wolfe KH (2007) Yeast genome evolution–the origin of the species. Yeast 24:929–942PubMedGoogle Scholar
  120. Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff J-N, Lesch K-P, Bisazza A, Minx P, Hillier L, Wilson RK, Fuerstenberg S, Boore J, Searle S, Postlethwait JH, Warren WC (2013) The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45:567–572PubMedGoogle Scholar
  121. Schranz ME, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr Opin Plant Biol 15:147–153PubMedGoogle Scholar
  122. Semon M, Wolfe KH (2008) Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc Natl Acad Sci USA 105:8333–8338PubMedCentralPubMedGoogle Scholar
  123. Sémon M, Wolfe KH (2007) Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol 24:860–867PubMedGoogle Scholar
  124. Semple C, Wolfe KH (1999) Gene duplication and gene conversion in the Caenorhabditis elegans genome. J Mol Evol 48:555–564PubMedGoogle Scholar
  125. Seoighe C, Wolfe KH (1999) Yeast genome evolution in the post-genome era. Curr Opin Microbiol 2:548–554PubMedGoogle Scholar
  126. Sikosek T, Chan HS, Bornberg-Bauer E (2012) Escape from adaptive conflict follows from weak functional trade-offs and mutational robustness. Proc Natl Acad Sci USA 109:14888–14893PubMedCentralPubMedGoogle Scholar
  127. Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ (2011) Understanding angiosperm diversification using small and large phylogenetic trees. Am J Bot 98:404–414PubMedGoogle Scholar
  128. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348PubMedGoogle Scholar
  129. Sugino RP, Innan H (2006) Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. Trends Genet 22:642–644PubMedGoogle Scholar
  130. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488PubMedGoogle Scholar
  131. Taylor JS (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13:382–390PubMedCentralPubMedGoogle Scholar
  132. Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356:1661–1679PubMedCentralPubMedGoogle Scholar
  133. Teshima KM, Innan H (2008) Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:1385–1398PubMedCentralPubMedGoogle Scholar
  134. Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, Nagylaki T, Hudson R, Bergelson J, Chen J-Q (2008) Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature 455:105–108PubMedGoogle Scholar
  135. Uyeno T, Smith GR (1972) Tetraploid origin of the karyotype of catostomid fishes. Science 175:644–646PubMedGoogle Scholar
  136. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732PubMedGoogle Scholar
  137. Vandepoele K, de Vos W, Taylor JS, Meyer A, de Peer Van, Yves (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643Google Scholar
  138. Volff J-N (2005) Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 94:280–294Google Scholar
  139. von Niederhäusern V, Kastenhuber E, Stäuble A, Gesemann M, Stephan Neuhauss CF (2013) Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish. Dev Dyn 242:1427–1441Google Scholar
  140. Wang J-T, Li J-T, Zhang X-F, Sun X-W (2012) Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genom 13:96Google Scholar
  141. Weadick CJ, Chang BS (2012) Complex patterns of divergence among green-sensitive (RH2a) African cichlid opsins revealed by Clade model analyses. BMC Evol Biol 12:206PubMedCentralPubMedGoogle Scholar
  142. Windsor DJ, Owens GL (2009) The opsin repertoire of Jenynsia onca: a new perspective on gene duplication and divergence in livebearers. BMC Res Notes 2:159PubMedCentralPubMedGoogle Scholar
  143. Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish? BioEssays 20:511–515Google Scholar
  144. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69Google Scholar
  145. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedGoogle Scholar
  146. Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314PubMedCentralPubMedGoogle Scholar
  147. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216PubMedGoogle Scholar
  148. Yu W-P, Yew K, Rajasegaran V, Venkatesh B (2007) Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts. BMC Evol Biol 7:49PubMedCentralPubMedGoogle Scholar
  149. Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proc Natl Acad Sci USA 103:3675–3680PubMedCentralPubMedGoogle Scholar
  150. Zhang X, Zhang Y, Zheng X, Kuang Y, Zhao Z, Zhao L, Li C, Jiang L, Cao D, Lu C, Xu P, Sun X (2013) A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio L.). Mar Biotechnol 15:275–312PubMedGoogle Scholar
  151. Zhou R, Moshgabadi N, Adams KL (2011) Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids. Proc Natl Acad Sci USA 108:16122–16127PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stella M. K. Glasauer
    • 1
    • 2
  • Stephan C. F. Neuhauss
    • 1
    Email author
  1. 1.Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
  2. 2.Life Science Zurich Graduate SchoolUniversity of ZurichZurichSwitzerland

Personalised recommendations