Molecular Genetics and Genomics

, Volume 289, Issue 6, pp 1225–1235 | Cite as

Identification and characterization of long intergenic non-coding RNAs related to mouse liver development

  • Jie Lv
  • Zhijun Huang
  • Hui Liu
  • Hongbo Liu
  • Wei Cui
  • Bao Li
  • Hongjuan He
  • Jing Guo
  • Qi Liu
  • Yan Zhang
  • Qiong Wu
Original Paper


Long non-coding RNAs (lncRNAs) have been studied extensively over the last few years. Liver is an important organ that plays a crucial role in glucose metabolism and homeostasis; however, there are few reports of the identification and functional characterization of lncRNAs with important roles in liver development. Therefore, it is necessary to systematically identify lncRNAs that are involved in liver development. In this paper, we assembled the transcriptome using published RNA-seq data across three mouse liver developmental stages and identified 4,882 putative long intergenic non-coding RNAs (lincRNAs) expressed in at least one of the investigated stages. Combining these with Ensembl lincRNAs, we established a reference catalog of 6,602 transcribed lincRNAs in the mouse liver. We then analyzed all the lincRNAs in this reference catalog systematically and revealed that liver lincRNAs carry different genomic signatures from protein-coding genes, while the putative lincRNAs are generally comparable with known Ensembl lincRNAs. In addition, putative lincRNAs are functionally associated with essential biological processes, including RNA splicing, protein localization and fatty acid metabolic process, implying that they may play an important role in regulating liver development. The validation of selected lincRNAs that are specifically expressed in developing liver tissues further suggested the effectiveness of our approach. Our study shows that lincRNAs that are differentially expressed during three liver developmental stages could have important regulatory roles in liver development. The identified putative lincRNAs are a valuable resource for further functional studies.


Next-generation sequencing Liver development Mouse Transcriptome RNA-sequencing 



The authors thank National Natural Science Foundation of China for funding. This work is supported by the National Natural Science Foundation of China [31171383, 31100934, 31201075, 31371478, 31371334].

Supplementary material

438_2014_882_MOESM1_ESM.pdf (178 kb)
Supplementary material 1 (PDF 177 kb)
438_2014_882_MOESM2_ESM.xlsx (7.4 mb)
Supplementary material 2 (XLSX 7566 kb)


  1. Bilodeau M, MacRae T, Gaboury L, Laverdure JP, Hardy MP, Mayotte N, Paradis V, Harton S, Perreault C, Sauvageau G (2009) Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1. PLoS One 4:e7500. doi: 10.1371/journal.pone.0007500 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Blake JA, Dolan M, Drabkin H, Hill DP, Li N, Sitnikov D, Bridges S, Burgess S, Buza T, McCarthy F, Peddinti D, Pillai L, Carbon S, Dietze H, Ireland A, Lewis SE, Mungall CJ, Gaudet P, Chrisholm RL, Fey P, Kibbe WA, Basu S, Siegele DA, McIntosh BK, Renfro DP, Zweifel AE, Hu JC, Brown NH, Tweedie S, Alam-Faruque Y, Apweiler R, Auchinchloss A, Axelsen K, Bely B, Blatter M, Bonilla C, Bouguerleret L, Boutet E, Breuza L, Bridge A, Chan WM, Chavali G, Coudert E, Dimmer E, Estreicher A, Famiglietti L, Feuermann M, Gos A, Gruaz-Gumowski N, Hieta R, Hinz C, Hulo C, Huntley R, James J, Jungo F, Keller G, Laiho K, Legge D, Lemercier P, Lieberherr D, Magrane M, Martin MJ, Masson P, Mutowo-Muellenet P, O’Donovan C, Pedruzzi I, Pichler K, Poggioli D, Porras Millan P, Poux S, Rivoire C, Roechert B, Sawford T, Schneider M, Stutz A, Sundaram S, Tognolli M, Xenarios I, Foulgar R, Lomax J, Roncaglia P, Khodiyar VK, Lovering RC, Talmud PJ, Chibucos M, Giglio MG, Chang H, Hunter S, McAnulla C, Mitchell A, Sangrador A, Stephan R, Harris MA, Oliver SG, Rutherford K, Wood V, Bahler J, Lock A, Kersey PJ, McDowall DM, Staines DM, Dwinell M, Shimoyama M, Laulederkind S, Hayman T, Wang S, Petri V, Lowry T, D’Eustachio P, Matthews L, Balakrishnan R, Binkley G, Cherry JM, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hitz BC, Hong EL, Karra K, Miyasato SR, Nash RS, Park J, Skrzypek MS, Weng S, Wong ED, Berardini TZ, Huala E, Mi H, Thomas PD, Chan J, Kishore R, Sternberg P, Van Auken K, Howe D, Westerfield M (2013) Gene Ontology annotations and resources. Nucleic Acids Res 41:D530–D535. doi: 10.1093/nar/gks1050 PubMedCrossRefGoogle Scholar
  3. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. doi: 10.1101/gad.17446611 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi: 10.1101/gr.132159.111 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS (2008a) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445. doi: 10.1101/gr.078378.108 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dinger ME, Pang KC, Mercer TR, Mattick JS (2008b) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4:e1000176. doi: 10.1371/journal.pcbi.1000176 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Farace MG, Hill A, Tripodi M, Padgett RW, Raschella G, Gambari R, Fantoni A, Hutchison CA 3rd, Edgell MH (1984) Molecular cloning and sequence analysis of a cDNA coding for the mouse alpha-like embryonic globin chain x. Gene 31:241–245. doi: 10.1016/0378-1119(84)90215-4 PubMedCrossRefGoogle Scholar
  8. Fernandez I, Fridley KM, Arasappan D, Ambler RV, Tucker PW, Roy K (2012) Gene expression profile and functionality of ESC-derived Lin-ckit+Sca-1+cells are distinct from Lin-ckit+Sca-1+cells isolated from fetal liver or bone marrow. PLoS One 7:e51944. doi: 10.1371/journal.pone.0051944 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Garcia-Giron C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kahari AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thormann A, Trevanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJ, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SM (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55. doi: 10.1093/nar/gks1236 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O’Malley BW, Kato S (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9:604–611. doi: 10.1038/ncb1577 PubMedCrossRefGoogle Scholar
  11. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214. doi: 10.1016/j.devcel.2012.12.012 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gu T, He H, Xing Y, Liu Q, Gu N, Kenkichi S, Jiang H, Wu Q (2011) Expression of non-coding RNA AB063319 derived from Rian gene during mouse development. J Mol Histol 42:105–112. doi: 10.1007/s10735-011-9312-z PubMedCrossRefGoogle Scholar
  13. Gu T, He H, Han Z, Zeng T, Huang Z, Liu Q, Gu N, Chen Y, Sugimoto K, Jiang H, Wu Q (2012) Expression of macro non-coding RNAs Meg8 and Irm in mouse embryonic development. Acta Histochem 114:392–399. doi: 10.1016/j.acthis.2011.07.009 PubMedCrossRefGoogle Scholar
  14. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510. doi: 10.1038/nbt.1633 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. doi: 10.1038/nature10398 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Han Z, He H, Zhang F, Huang Z, Liu Z, Jiang H, Wu Q (2012) Spatiotemporal expression pattern of Mirg, an imprinted non-coding gene, during mouse embryogenesis. J Mol Histol 43:1–8. doi: 10.1007/s10735-011-9367-x PubMedCrossRefGoogle Scholar
  17. Han Z, Liu Q, Huang Z, Cui W, Tian Y, Yan W, Wu Q (2013) Expression and imprinting analysis of AK044800, a transcript from the Dlk1-Dio3 imprinted gene cluster during mouse embryogenesis. Mol Cells 35:285–290. doi: 10.1007/s10059-013-2275-z PubMedCentralPubMedCrossRefGoogle Scholar
  18. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigo R, Hubbard TJ (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774. doi: 10.1101/gr.135350.111 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Henderson CJ, Bammler T, Wolf CR (1994) Deduced amino acid sequence of a murine cytochrome P-450 Cyp4a protein: developmental and hormonal regulation in liver and kidney. Biochim Biophys Acta 1200:182–190. doi: 10.1016/0304-4165(94)90134-1 PubMedCrossRefGoogle Scholar
  20. Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, Lempicki RA (2009) Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics Chapter 13: Unit 13 11. doi: 10.1002/0471250953.bi1311s27
  21. Huarte M (2013) LncRNAs have a say in protein translation. Cell Res 23:449–451. doi: 10.1038/cr.2012.169 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ilott NE, Ponting CP (2013) Predicting long non-coding RNAs using RNA sequencing. Methods 63:50–59. doi: 10.1016/j.ymeth.2013.03.019 PubMedCrossRefGoogle Scholar
  23. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205. doi: 10.1093/nar/gkt1076 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M, Feschotte C (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9:e1003470. doi: 10.1371/journal.pgen.1003470 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13:R107. doi: 10.1186/gb-2012-13-11-r107 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472. doi: 10.1126/science.1228110 PubMedCrossRefGoogle Scholar
  27. Lee R (2013) An introduction to the UCSC genome browser. WormBook: 1–2. doi: 10.1895/wormbook.1.160.1
  28. Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323. doi: 10.1016/j.cell.2013.02.016 PubMedCrossRefGoogle Scholar
  29. Lee JS, Ward WO, Knapp G, Ren H, Vallanat B, Abbott B, Ho K, Karp SJ, Corton JC (2012) Transcriptional ontogeny of the developing liver. BMC Genomics 13:33. doi: 10.1186/1471-2164-13-33 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Liu H, Zhu R, Lv J, He H, Yang L, Huang Z, Su J, Zhang Y, Yu S, Wu Q (2014) DevMouse, the mouse developmental methylome database and analysis tools. Database (Oxford): bat084. doi: 10.1093/database/bat084
  31. Luo H, Sun S, Li P, Bu D, Cao H, Zhao Y (2013) Comprehensive characterization of 10,571 mouse large intergenic noncoding RNAs from whole transcriptome sequencing. PLoS One 8:e70835. doi: 10.1371/journal.pone.0070835 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lv J, Cui W, Liu H, He H, Xiu Y, Guo J, Liu Q, Zeng T, Chen Y, Zhang Y, Wu Q (2013a) Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS One 8:e71152. doi: 10.1371/journal.pone.0071152 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lv J, Liu H, Huang Z, Su J, He H, Xiu Y, Zhang Y, Wu Q (2013b) Long non-coding RNA identification over mouse brain development by integrative modeling of chromatin and genomic features. Nucleic Acids Res 41:10044–10061. doi: 10.1093/nar/gkt818 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Managadze D, Lobkovsky AE, Wolf YI, Shabalina SA, Rogozin IB, Koonin EV (2013) The vast, conserved mammalian lincRNome. PLoS Comput Biol 9:e1002917. doi: 10.1371/journal.pcbi.1002917 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec no 1):R17–R29. doi: 10.1093/hmg/ddl046 PubMedCrossRefGoogle Scholar
  36. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Raney BJ, Pohl A, Malladi VS, Li CH, Lee BT, Learned K, Kirkup V, Hsu F, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Dreszer TR, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, Kent WJ (2013) The UCSC genome browser database: extensions and updates 2013. Nucleic Acids Res 41:D64–D69. doi: 10.1093/nar/gks1048 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Moran I, Akerman I, van de Bunt M, Xie R, Benazra M, Nammo T, Arnes L, Nakic N, Garcia-Hurtado J, Rodriguez-Segui S, Pasquali L, Sauty-Colace C, Beucher A, Scharfmann R, van Arensbergen J, Johnson PR, Berry A, Lee C, Harkins T, Gmyr V, Pattou F, Kerr-Conte J, Piemonti L, Berney T, Hanley N, Gloyn AL, Sussel L, Langman L, Brayman KL, Sander M, McCarthy MI, Ravassard P, Ferrer J (2012a) Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16:435–448. doi: 10.1016/j.cmet.2012.08.010 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Moran VA, Perera RJ, Khalil AM (2012b) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40:6391–6400. doi: 10.1093/nar/gks296 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. doi: 10.1038/nmeth.1226 PubMedCrossRefGoogle Scholar
  40. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591. doi: 10.1101/gr.133009.111 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565. doi: 10.1101/gr.6036807 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5:e1000617. doi: 10.1371/journal.pgen.1000617 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Potocnik AJ, Brakebusch C, Fassler R (2000) Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12:653–663. doi: 10.1016/S1074-7613(00)80216-2 PubMedCrossRefGoogle Scholar
  44. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi: 10.1093/nar/gkr1079 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Qu Z, Adelson DL (2012) Identification and comparative analysis of ncRNAs in human, mouse and zebrafish indicate a conserved role in regulation of genes expressed in brain. PLoS One 7:e52275. doi: 10.1371/journal.pone.0052275 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Santoro F, Mayer D, Klement RM, Warczok KE, Stukalov A, Barlow DP, Pauler FM (2013) Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140:1184–1195. doi: 10.1242/dev.088849 PubMedCrossRefGoogle Scholar
  47. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, Ye J (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:D13–D25. doi: 10.1093/nar/gkr1184 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050. doi: 10.1101/gr.3715005 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM, Groudine M, Bender M, Kaul R, Canfield T, Giste E, Johnson A, Zhang M, Balasundaram G, Byron R, Roach V, Sabo PJ, Sandstrom R, Stehling AS, Thurman RE, Weissman SM, Cayting P, Hariharan M, Lian J, Cheng Y, Landt SG, Ma Z, Wold BJ, Dekker J, Crawford GE, Keller CA, Wu W, Morrissey C, Kumar SA, Mishra T, Jain D, Byrska-Bishop M, Blankenberg D, Lajoie BR, Jain G, Sanyal A, Chen KB, Denas O, Taylor J, Blobel GA, Weiss MJ, Pimkin M, Deng W, Marinov GK, Williams BA, Fisher-Aylor KI, Desalvo G, Kiralusha A, Trout D, Amrhein H, Mortazavi A, Edsall L, McCleary D, Kuan S, Shen Y, Yue F, Ye Z, Davis CA, Zaleski C, Jha S, Xue C, Dobin A, Lin W, Fastuca M, Wang H, Guigo R, Djebali S, Lagarde J, Ryba T, Sasaki T, Malladi VS, Cline MS, Kirkup VM, Learned K, Rosenbloom KR, Kent WJ, Feingold EA, Good PJ, Pazin M, Lowdon RF, Adams LB (2012) An encyclopedia of mouse DNA elements (mouse ENCODE). Genome Biol 13:418. doi: 10.1186/gb-2012-13-8-418 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sun L, Zhang Z, Bailey TL, Perkins AC, Tallack MR, Xu Z, Liu H (2012) Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinform 13:331. doi: 10.1186/1471-2105-13-331 CrossRefGoogle Scholar
  51. Sun J, Lin Y, Wu J (2013a) Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One 8:e75750. doi: 10.1371/journal.pone.0075750 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013b) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166. doi: 10.1093/nar/gkt646 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH, Li JB (2013) RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 23:201–216. doi: 10.1101/gr.141424.112 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Tempel S (2012) Using and understanding RepeatMasker. Methods Mol Biol 859:29–51. doi: 10.1007/978-1-61779-603-6_2 PubMedCrossRefGoogle Scholar
  55. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7(Suppl 1):S12 11–S12 14. doi: 10.1186/gb-2006-7-s1-s12 CrossRefGoogle Scholar
  56. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi: 10.1093/bioinformatics/btp120 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. doi: 10.1038/nbt.1621 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. doi: 10.1038/nprot.2012.016 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. doi: 10.1016/j.cell.2013.06.020 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. doi: 10.1016/j.cell.2011.11.055 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. doi: 10.1016/j.molcel.2011.08.018 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Wei Y, Su J, Liu H, Lv J, Wang F, Yan H, Wen Y, Wu Q, Zhang Y (2014) MetaImprint: an information repository of mammalian imprinted genes. Development 141:2516–2523. doi: 10.1242/dev.105320 PubMedCrossRefGoogle Scholar
  63. Westerlund M, Galter D, Carmine A, Olson L (2005) Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh 1 mRNAs in rodent embryos. Cell Tissue Res 322:227–236. doi: 10.1007/s00441-005-0038-7 PubMedCrossRefGoogle Scholar
  64. Yu T, Thomas DM, Zhu W, Goodman M, Gumucio DL (2002) Regulation of fetal versus embryonic gamma globin genes: appropriate developmental stage expression patterns in the presence of HS2 of the locus control region. Blood 99:1082–1084. doi: 10.1182/blood.V99.3.1082 PubMedCrossRefGoogle Scholar
  65. Zeng TB, He HJ, Zhang FW, Han ZB, Huang ZJ, Liu Q, Wu Q (2013) Expression analysis of AK003491, an imprinted noncoding RNA, during mouse development. Genes Genet Syst 88:127–133. doi: 10.1266/ggs.88.127 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jie Lv
    • 1
  • Zhijun Huang
    • 1
  • Hui Liu
    • 1
  • Hongbo Liu
    • 1
  • Wei Cui
    • 1
  • Bao Li
    • 1
  • Hongjuan He
    • 1
  • Jing Guo
    • 1
  • Qi Liu
    • 1
  • Yan Zhang
    • 2
  • Qiong Wu
    • 1
  1. 1.School of Life Science and Technology, State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina
  2. 2.College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina

Personalised recommendations