Advertisement

Molecular Genetics and Genomics

, Volume 288, Issue 12, pp 717–725 | Cite as

Chicken β-globin insulators fail to shield the nkx2.5 promoter from integration site effects in zebrafish

  • Viktorija Grajevskaja
  • Jorune Balciuniene
  • Darius Balciunas
Technical Note

Abstract

Genetic lineage tracing and conditional mutagenesis are developmental genetics techniques reliant on precise tissue-specific expression of transgenes. In the mouse, high specificity is usually achieved by inserting the transgene into the locus of interest through homologous recombination in embryonic stem cells. In the zebrafish, DNA containing the transgenic construct is randomly integrated into the genome, usually through transposon-mediated transgenesis. Expression of such transgenes is affected by regulatory features surrounding the integration site from general accessibility of chromatin to tissue-specific enhancers. We tested if the 1.2 kb cHS4 insulators derived from the chicken β-globin locus can shield a transgene from chromosomal position effects in the zebrafish genome. As our test promoters, we used two different-length versions of the zebrafish nkx2.5. We found that flanking a transgenic construct by cHS4 insulation sequences leads to overall increase in the expression of nkx2.5:mRFP. However, we also observed a very high degree of variability of mRFP expression, indicating that cHS4 insulators fail to protect nkx2.5:mRFP from falling under the control of enhancers in the vicinity of integration site.

Keywords

Zebrafish Transposon Position effect Insulator Transgenesis nkx2.5 

Notes

Acknowledgments

We thank Dr. Any Wilber for sharing the plasmid containing CHS4 insulators. We thank NIH (Grant HD061749) for financial support.

References

  1. Amsterdam A, Lin S, Hopkins N (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol 171:123–129PubMedCrossRefGoogle Scholar
  2. Balciunas D, Davidson AE, Sivasubbu S, Hermason SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5:62PubMedCrossRefGoogle Scholar
  3. Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, Mclvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:1715–1724CrossRefGoogle Scholar
  4. Bayer TA, Campos-Ortega JA (1992) A transgene containing lacZ is expressed in primary sensory neurons in zebrafish. Development 115:421–426PubMedGoogle Scholar
  5. Bellen HJ (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell 11:2271–2281PubMedGoogle Scholar
  6. Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev 3:1288–1300PubMedCrossRefGoogle Scholar
  7. Bessa J, Tena JJ, Calle-Mustienes E, Fernández-Miñán A, Naranjo S, Fernández A, Montoliu L, Akalin A, Lenhard B, Casares F, Gómez-Skarmeta JL (2009) Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev Dyn 238:2409–2417PubMedCrossRefGoogle Scholar
  8. Bier E, Vaessin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman L, Carretto R, Uemura T, Grell E (1989) Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev 3:1273–1287PubMedCrossRefGoogle Scholar
  9. Bussmann J, Schulte-Merker S (2011) Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138:4327–4332PubMedCrossRefGoogle Scholar
  10. Chalfie M, Tu Y, Euskirchen G, Ward WWW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRefGoogle Scholar
  11. Chi X, Zhang S, Yu W, DeMayo FJ, Rosenberg SM, Schwartz RJ (2003) Expression of Nk2–5-GFP bacterial artificial chromosome transgenic mice closely resembles endogenous Nk2–5 gene activity. Genesis 35:220–226PubMedCrossRefGoogle Scholar
  12. Choe CP, Collazo A, Trinh LA, Pan L, Moens CB, Crump JG (2013) Wnt-dependent epithelial transitions drive pharyngeal pouch formation. Dev Cell 24:296–309PubMedCrossRefGoogle Scholar
  13. Chung JH, Whiteley M, Felsenfeld G (1993) A 5′ element of the chicken b-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74:505–514PubMedCrossRefGoogle Scholar
  14. Chung JH, Bell AC, Felsenfeld G (1997) Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci USA 94:575–580PubMedCrossRefGoogle Scholar
  15. Clark KJ, Balciunas D, Pogoda HM, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM, Ni J, Nielsen AL, Patowary A, Scaria V, Sivasubbu S, Xu X, Hammerschmidt M, Ekker SC (2011) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8:506–512PubMedCrossRefGoogle Scholar
  16. Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263:191–202PubMedCrossRefGoogle Scholar
  17. Ellingsen S, Laplante MA, König M, Kikuta H, Furmanek T, Hoivik EA, Becker TS (2005) Large-scale enhancer detection in the zebrafish genome. Development 132:3799–3811PubMedCrossRefGoogle Scholar
  18. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G (2000) A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 97:9150–9155PubMedCrossRefGoogle Scholar
  19. Emery DW, Yannaki E, Tubb J, Nishino T, Li Q, Stamatoyannopoulos G (2013) Development of virus vectors for gene therapy of β chain hemoglobinopathies: flanking with a chromatin insulator reduces γ-globin gene silencing in vivo. Blood 100:2012–2019CrossRefGoogle Scholar
  20. Field HA, Ober EA, Roeser T, Stainier DY (2003) Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253:279–290PubMedCrossRefGoogle Scholar
  21. Gibbs PDL, Schmale MC (2000) GFP as a genetic marker scorable throughout the life cycle of transgenic zebra fish. Mar Biotechnol 2:107–125PubMedGoogle Scholar
  22. Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135–140PubMedCrossRefGoogle Scholar
  23. Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, Obregon P, Kikuchi K, Poss KD, Burns CE, Burns CG (2013) Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 140:1353–1363PubMedCrossRefGoogle Scholar
  24. Jeong Y, El-Jaick K, Roessler E, Muenke M, Epstein DJ (2006) A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 133:761–772PubMedCrossRefGoogle Scholar
  25. Kawakami K, Schima A (1999) Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240:239–244PubMedCrossRefGoogle Scholar
  26. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97:11403–11408PubMedCrossRefGoogle Scholar
  27. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Masayoshi M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144PubMedCrossRefGoogle Scholar
  28. Koga A, Cheah FSH, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474PubMedCrossRefGoogle Scholar
  29. Köster RW, Fraser SE (2001) Tracing expression in living zebrafish embryos. Dev Biol 233:329–346PubMedCrossRefGoogle Scholar
  30. Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN (1999) Control of early cardiac-specific transcription of Nk2–5 by a GATA-dependent enhancer. Development 126:75–84PubMedGoogle Scholar
  31. Maddison LA, Lu J, Chen W (2011) Generating conditional mutations in zebrafish using gene-trap mutagenesis. Methods Cell Biol 104:1–22PubMedCrossRefGoogle Scholar
  32. Ochiai H, Harashima H, Kamiya H (2011) Effects of insulator cHS4 on transgene expression from plasmid DNA in a positive feedback system. J Biosci Bioeng 112:432–434PubMedCrossRefGoogle Scholar
  33. Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499PubMedCrossRefGoogle Scholar
  34. Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231:449–459PubMedCrossRefGoogle Scholar
  35. Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE, Myers SR, Moulder GL, Thomas MJ, Ekker SC (2009) Nicotine response genetics in the zebrafish. Proc Natl Acad Sci USA 106:18662–18667PubMedCrossRefGoogle Scholar
  36. Ragvin A, Moro E, Fredman D, Navratilova P, Drivenes Ø, Engström PG, Alonso ME, de la Calle Mustienes E, Gómez Skarmeta JL, Tavares MJ, Casares F, Manzanares M, van Heyningen V, Molven A, Njølstad PR, Argenton F, Lenhard B, Becker TS (2010) Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc Natl Acad Sci USA 107:775–780PubMedCrossRefGoogle Scholar
  37. Raz E, van Luenen HGAM, Schaerringer B, Plasterk RHA, Driever W (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 8:82–88PubMedCrossRefGoogle Scholar
  38. Reecy JM, Li X, Yamada M, DeMayo FJ, Newman CS, Harvey RP, Schwartz RJ (1999) Identification of upstream regulatory regions in the heart-expressed homeobox gene Nk2–5. Development 126:839–849PubMedGoogle Scholar
  39. Rincón-Arano H, Furlan-Magaril M, Recillas-Targa F (2007) Protection against telomeric position effects by the chicken cHS4 beta-globin insulator. Proc Natl Acad Sci USA 104:14044–14049PubMedCrossRefGoogle Scholar
  40. Rivella S, Callegari JA, May C, Tan CW, Sadelain M (2000) The cHS4 insulator increases the probability of retroviral expression at random chromosomal sites. J Virol 74:4679–4687PubMedCrossRefGoogle Scholar
  41. Searcy RD, Vincent EB, Liberatore CM, Yutzey KE (1998) A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125:4461–4470PubMedGoogle Scholar
  42. Sharma N, Hollensen AK, Bak RO, Staunstrup NH, Schrøder LD, Mikkelsen JG (2012) The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells. PLoS One 7:e48421. doi: 10.1371/journal.pone.0048421 PubMedCrossRefGoogle Scholar
  43. Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Heromanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123:513–529PubMedCrossRefGoogle Scholar
  44. Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477PubMedCrossRefGoogle Scholar
  45. Suster ML, Abe G, Schouw A, Kawakami K (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021PubMedCrossRefGoogle Scholar
  46. Uchida N, Hanawa H, Yamamoto M, Shimada T (2013) The chicken hypersensitivity site 4 core insulator blocks promoter interference in lentiviral vectors. Hum Gene Ther Methods 24:117–124PubMedCrossRefGoogle Scholar
  47. Witzel HR, Jungblut B, Choe CP, Crump JG, Braun T, Gergana D (2012) The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity. Dev Cell 23:58–70PubMedCrossRefGoogle Scholar
  48. Yahata K, Maeshima K, Sone T, Ando T, Okabe M, Imamoto N, Imamoto F (2007) cHS4 insulator-mediated alleviation of promoter interference during cell-based expression of tandemly associated transgenes. J Mol Biol 374:580–590PubMedCrossRefGoogle Scholar
  49. Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW (2002) Topological constraints governing the use of the chicken HS4 chromatin insulators in oncoretrovirus vectors. Mol Ther 5:589–598PubMedCrossRefGoogle Scholar
  50. Yao S, Osborne CS, Bharadwaj RP, Pasceri P, Sukonnik T, Pannell D, Recillas-Targa F, West AG, Ellis J (2003) Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. Nucleic Acids Res 31:5317–5323PubMedCrossRefGoogle Scholar
  51. Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, Gu A, Mosimann C, Sondalle S, Peterson RE, Heideman W, Burns CE, Burns CG (2011) Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature 474:645–648PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Viktorija Grajevskaja
    • 1
    • 2
  • Jorune Balciuniene
    • 1
  • Darius Balciunas
    • 1
  1. 1.Department of BiologyTemple UniversityPhiladelphiaUSA
  2. 2.Department of Zoology, Faculty of Natural SciencesVilnius UniversityVilniusLithuania

Personalised recommendations