Molecular Genetics and Genomics

, Volume 288, Issue 11, pp 549–557 | Cite as

Genomic comparison of Salmonella typhimurium DT104 with non-DT104 strains

  • Er-Ying Zhao
  • Hong-Xia Bao
  • Le Tang
  • Qing-Hua Zou
  • Wei-Qiao Liu
  • Da-Ling Zhu
  • Jessica Chin
  • Ying-Ying Dong
  • Yong-Guo Li
  • Feng-Lin Cao
  • Cornelis Poppe
  • Kenneth E. Sanderson
  • Randal N. Johnston
  • Daoguo Zhou
  • Gui-Rong Liu
  • Shu-Lin Liu
Original Paper
  • 521 Downloads

Abstract

DT104 emerged as a new branch of Salmonella typhimurium with resistance to multiple antimicrobials. To reveal some general genomic features of DT104 for clues of evolutionary events possibly associated with the emergence of this relatively new type of this pathogen, we mapped 11 independent DT104 strains and compared them with non-DT104 S. typhimurium strains. We found that all 11 DT104 strains contained three insertions absent in non-DT104 strains, i.e., the previously reported ST104, ST104B and ST64B. However, SGI-1, a genomic island known to be responsible for DT104 multidrug resistance, was not present in all DT104 strains examined in this study: one DT104 strain did not contain SGI-1 but carried a 144 kb plasmid, suggesting possible evolutionary relationships between the two DNA elements in the development of antimicrobial resistance.

Keywords

Salmonella typhimurium DT104 Antimicrobial resistance SGI-1 

Notes

Acknowledgments

This work was supported by Genome Canada Grant 256177 to CP; a Grant of National Natural Science Foundation of China (NSFC31100134) to QHZ; a Grant of National Natural Science Foundation of China (NSFC30970078) and a Grant of Natural Science Foundation of Heilongjiang Province of China to GRL; a Heilongjiang Innovation Endowment Award for graduate studies (YJSCX2012-197HLJ) to LT; and Grants of the National Natural Science Foundation of China (NSFC30970119, 81030029, 81271786), a Grant of the National Natural Science Foundation of China and National Institutes of Health of USA (NSFC-NIH 81161120416), and a Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, 20092307110001) to SLL.

Conflict of interest

All authors have declared that no competing interests exist.

References

  1. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, Mulvey MR (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183(19):5725–5732PubMedCrossRefGoogle Scholar
  2. Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou YY, Wang HS, Lee YS (2005) The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33(5):1690–1698PubMedCrossRefGoogle Scholar
  3. Cooke FJ, Brown DJ, Fookes M, Pickard D, Ivens A, Wain J, Roberts M, Kingsley RA, Thomson NR, Dougan G (2008) Characterization of the genomes of a diverse collection of Salmonella enterica serovar Typhimurium definitive phage type 104. J Bacteriol 190(24):8155–8162PubMedCrossRefGoogle Scholar
  4. Crosa JH, Brenner DJ, Ewing WH, Falkow S (1973) Molecular relationships among the Salmonelleae. J Bacteriol 115(1):307–315PubMedGoogle Scholar
  5. Fekete PZ, Nagy B (2008) Salmonella Genomic Island 1 (SGI1) and genetic characteristics of animal and food isolates of Salmonella typhimurium DT104 in Hungary. Acta Vet Hung 56(1):5–11PubMedCrossRefGoogle Scholar
  6. Feng DF, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94(24):13028–13033PubMedCrossRefGoogle Scholar
  7. Feng Y, Liu W-Q, Sanderson KE, Liu S-L (2011) Comparison of Salmonella genomes. In: Porwollik S (ed) Salmonella from genome to function. Caister Academic Press, Norfolk, pp 49–67Google Scholar
  8. Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ (1998) Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the US. N Engl J Med 338(19):1333–1338PubMedCrossRefGoogle Scholar
  9. Helms M, Ethelberg S, Molbak K (2005) International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg Infect Dis 11(6):859–867PubMedCrossRefGoogle Scholar
  10. Hermans AP, Abee T, Zwietering MH, Aarts HJ (2005) Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and non prophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl Environ Microbiol 71(9):4979–4985PubMedCrossRefGoogle Scholar
  11. Hermans AP, Beuling AM, van Hoek AH, Aarts HJ, Abee T, Zwietering MH (2006) Distribution of prophages and SGI-1 antibiotic-resistance genes among different Salmonella enterica serovar Typhimurium isolates. Microbiology 152(Pt 7):2137–2147PubMedCrossRefGoogle Scholar
  12. Kauffmann F, Edwards PR (1957) A revised, simplified Kauffmann–White schema. Acta pathologica et microbiologica Scandinavica 41(3):242–246PubMedCrossRefGoogle Scholar
  13. Kawagoe K, Mine H, Asai T, Kojima A, Ishihara K, Harada K, Ozawa M, Izumiya H, Terajima J, Watanabe H et al (2007) Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar typhimurium isolates from food-producing animals in Japan. J Vet Med Sci 69(11):1211–1213PubMedCrossRefGoogle Scholar
  14. Le Minor L, Popoff MY (1987) Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella. Int J Syst Bacteriol 37:465–468CrossRefGoogle Scholar
  15. Liu SL (2007) Physical mapping of Salmonella genomes. In: Schatten H, Eisenstark A (eds) Methods in molecular biology. Methods and Protocols. Salmonella, vol 394, Humana Press Inc, Totowa, NJ, pp 39–58. ISBN:1064-3745Google Scholar
  16. Liu SL, Sanderson KE (1992) A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol 174(5):1662–1672PubMedGoogle Scholar
  17. Liu SL, Sanderson KE (1995a) I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J Bacteriol 177(11):3355–3357PubMedGoogle Scholar
  18. Liu SL, Sanderson KE (1995b) Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA 92(4):1018–1022PubMedCrossRefGoogle Scholar
  19. Liu SL, Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA 93(19):10303–10308PubMedCrossRefGoogle Scholar
  20. Liu SL, Hessel A, Sanderson KE (1993a) Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp. Escherichia coli, and other bacteria. Proc Natl Acad Sci USA 90(14):6874–6878PubMedCrossRefGoogle Scholar
  21. Liu SL, Hessel A, Sanderson KE (1993b) The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis. J Bacteriol 175(13):4104–4120PubMedGoogle Scholar
  22. Liu SL, Hessel A, Sanderson KE (1993c) The XbaI-BlnI-CeuI genomic cleavage map of Salmonella enteritidis shows an inversion relative to Salmonella typhimurium LT2. Mol Microbiol 10(3):655–664PubMedCrossRefGoogle Scholar
  23. Liu SL, Schryvers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome structure. J Bacteriol 181(21):6747–6755PubMedGoogle Scholar
  24. Liu GR, Rahn A, Liu WQ, Sanderson KE, Johnston RN, Liu SL (2002) The evolving genome of Salmonella enterica serovar Pullorum. J Bacteriol 184(10):2626–2633PubMedCrossRefGoogle Scholar
  25. Liu GR, Liu WQ, Johnston RN, Sanderson KE, Li SX, Liu SL (2006) Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol Biol Evol 23(2):365–371PubMedCrossRefGoogle Scholar
  26. Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, Guo JT, Peng YH, Jin Y, Li YG, Hu SN et al (2009) Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS One 4(2):e4510PubMedCrossRefGoogle Scholar
  27. Marshall P, Lemieux C (1992) The I-CeuI endonuclease recognizes a sequence of 19 base pairs and preferentially cleaves the coding strand of the Chlamydomonas moewusii chloroplast large subunit rRNA gene. Nucleic Acids Res 20(23):6401–6407PubMedCrossRefGoogle Scholar
  28. Matiasovicova J, Adams P, Barrow PA, Hradecka H, Malcova M, Karpiskova R, Budinska E, Pilousova L, Rychlik I (2007) Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. Arch Microbiol 187(5):415–424PubMedCrossRefGoogle Scholar
  29. McClelland M, Jones R, Patel Y, Nelson M (1987) Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res 15(15):5985–6005PubMedCrossRefGoogle Scholar
  30. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F et al (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858):852–856PubMedCrossRefGoogle Scholar
  31. Mmolawa PT, Schmieger H, Heuzenroeder MW (2003) Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar typhimurium DT 64. J Bacteriol 185(21):6481–6485PubMedCrossRefGoogle Scholar
  32. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A (2006) The genetics of Salmonella genomic island 1. Microbes Infect 8(7):1915–1922Google Scholar
  33. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26(1–2):74–86PubMedCrossRefGoogle Scholar
  34. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT et al (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858):848–852PubMedCrossRefGoogle Scholar
  35. Popoff MY (2001) Antigenic formulas of the Salmonella serovars, 8th edn. WHO Collaborating Center for Reference and Research on Salmonella, ParisGoogle Scholar
  36. Popoff MY, Le Minor LE (2005) Genus XXXIII Salmonella. In: Brenner DJ, Krieg NR, Stanley JT (eds) Bergey’s mannual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 764–799Google Scholar
  37. Poppe C, Ziebell K, Martin L, Allen K (2002) Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates. Microb Drug Resist 8(2):107–122PubMedCrossRefGoogle Scholar
  38. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ 3rd (1989) Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27(2):313–320PubMedGoogle Scholar
  39. Tanaka K, Nishimori K, Makino S, Nishimori T, Kanno T, Ishihara R, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y et al (2004) Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J Clin Microbiol 42(4):1807–1812PubMedCrossRefGoogle Scholar
  40. Tang L, Liu SL (2012) The 3Cs provide a novel concept of bacterial species: messages from the genome as illustrated by Salmonella. Antonie Van Leeuwenhoek 101(1):67–72PubMedCrossRefGoogle Scholar
  41. Threlfall EJ, Frost JA, Ward LR, Rowe B (1994) Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 134(22):577PubMedCrossRefGoogle Scholar
  42. Weese JS, Baird JD, Poppe C, Archambault M (2001) Emergence of Salmonella typhimurium definitive type 104 (DT104) as an important cause of salmonellosis in horses in Ontario. Can Vet J 42(10):788–792PubMedGoogle Scholar
  43. Yokoyama E, Maruyama S, Kabeya H, Hara S, Sata S, Kuroki T, Yamamoto T (2007) Prevalence and genetic properties of Salmonella enterica serovar typhimurium definitive phage type 104 isolated from Rattus norvegicus and Rattus rattus house rats in Yokohama city Japan. Appl Environ Microbiol 73(8):2624–2630PubMedCrossRefGoogle Scholar
  44. Yu CY, Chou SJ, Yeh CM, Chao MR, Huang KC, Chang YF, Chiou CS, Weill FX, Chiu CH, Chu CH, Chu C (2008) Prevalence and characterization of multidrug-resistant (type ACSSuT) Salmonella enterica serovar Typhimurium strains in isolates from four gosling farms and a hatchery farm. J Clin Microbiol 46(2):522–526Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Er-Ying Zhao
    • 1
  • Hong-Xia Bao
    • 1
    • 5
  • Le Tang
    • 1
    • 5
  • Qing-Hua Zou
    • 2
    • 1
  • Wei-Qiao Liu
    • 3
    • 10
  • Da-Ling Zhu
    • 4
  • Jessica Chin
    • 3
  • Ying-Ying Dong
    • 3
  • Yong-Guo Li
    • 6
  • Feng-Lin Cao
    • 6
  • Cornelis Poppe
    • 7
  • Kenneth E. Sanderson
    • 3
  • Randal N. Johnston
    • 8
  • Daoguo Zhou
    • 9
  • Gui-Rong Liu
    • 1
  • Shu-Lin Liu
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China)Harbin Medical UniversityHarbinChina
  2. 2.Department of MicrobiologyPeking University Health Science CenterBeijingChina
  3. 3.Departments of Microbiology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
  4. 4.Department of Biopharmaceuticals, Faculty of PharmacyHarbin Medical UniversityHarbinChina
  5. 5.HMU-UCFM Centre for Infection and GenomicsHarbin Medical UniversityHarbinChina
  6. 6.Genetic Diagnosis Laboratory of First HospitalHarbin Medical UniversityHarbinChina
  7. 7.Laboratory for Foodborne ZoonosesPublic Health Agency of CanadaGuelphCanada
  8. 8.Departments of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada
  9. 9.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  10. 10.Department of NeurologyVancouver General HospitalVancouverCanada

Personalised recommendations