Molecular Genetics and Genomics

, Volume 288, Issue 9, pp 425–436 | Cite as

A genome-wide analysis of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis Beijing genotype

  • Wei Wu
  • Huajun Zheng
  • Lu Zhang
  • Zilu Wen
  • Shulin Zhang
  • Hao Pei
  • Guohua Yu
  • Yongqiang Zhu
  • Zhenling Cui
  • Zhongyi Hu
  • Honghai Wang
  • Yao Li
Original Paper


The Beijing genotype of Mycobacterium tuberculosis (MTB) is one of the most successful MTB lineages that has disseminated in the world. In China, the rate of multidrug-resistant (MDR) tuberculosis is significantly higher than the global average rate, and the Beijing genotype strains take the largest share of MDR strains. To study the genetic basis of the epidemiological findings that Beijing genotype has often been associated with tuberculosis outbreaks and drug resistance, we determined the genome sequences of four clinical isolates: two extensively drug resistant (XDR1219, XDR1221) and two multidrug resistant (WX1, WX3), using whole-genome sequencing. A large number of individual and shared SNPs of the four Beijing strains were identified. Our isolates harbored almost all classic drug resistance-associated mutations. The mutations responsible for drug resistance in the two XDR strains were consistent with the clinical quantitative drug resistance levels. COG analysis revealed that Beijing strains have significantly higher abundances of the mutations responsible for cell wall/membrane/envelope biogenesis (COG M), secondary metabolites biosynthesis, transport and catabolism (COG Q), lipid transport and metabolism (COG I) and defense mechanisms (COG V). The shared mutated genes of the four studied Beijing strains were significantly overrepresented in three DNA repair pathways. Our analyses promote the understanding of the genome polymorphism of the Beijing family strains and provide the molecular genetic basis for their wide dissemination capacity and drug resistance.


Mycobacterium tuberculosis Resistance Beijing genotype Genome DNA repair 



Mycobacterium tuberculosis


Multidrug resistant


Clusters of Orthologous Groups of proteins








Multidrug-resistant tuberculosis


Extensively drug-resistant tuberculosis




Single nucleotide polymorphisms


Minimum inhibitory concentration


Open reading frames


TB Drug Resistance Mutation Database








Quinolone resistance-determining region








Mismatch repair


Base excision repair


Nucleotide excision repair


Non-homologous end joining


Whole-genome sequence


Phthiocerol dimycocerosates




Reactive oxygen species


Reactive nitrogen intermediates

Supplementary material

438_2013_758_MOESM1_ESM.xlsx (350 kb)
Supplementary material 1 (XLSX 349 kb)
438_2013_758_MOESM2_ESM.xlsx (102 kb)
Supplementary material 2 (XLSX 101 kb)
438_2013_758_MOESM3_ESM.xlsx (17 kb)
Supplementary material 3 (XLSX 17 kb)


  1. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66(7):1417–1430. doi:10.1093/jac/dkr173 PubMedCrossRefGoogle Scholar
  2. Almeida D, Rodrigues C, Ashavaid TF, Lalvani A, Udwadia ZF, Mehta A (2005) High incidence of the Beijing genotype among multidrug-resistant isolates of Mycobacterium tuberculosis in a tertiary care center in Mumbai, India. Clin Infect Dis 40(6):881–886. doi:10.1086/427940 PubMedCrossRefGoogle Scholar
  3. Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2(5):489–493PubMedCrossRefGoogle Scholar
  4. Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E (2004) Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother 48(4):1281–1288PubMedCrossRefGoogle Scholar
  5. Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN (2002) Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10(1):45–52PubMedCrossRefGoogle Scholar
  6. Bodmer T, Zurcher G, Imboden P, Telenti A (1995) Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 35(2):345–348PubMedCrossRefGoogle Scholar
  7. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedCrossRefGoogle Scholar
  8. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544. doi:10.1038/31159 PubMedCrossRefGoogle Scholar
  9. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44(1):106–110. doi:10.1038/ng.1038 CrossRefGoogle Scholar
  10. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147. doi:10.1371/journal.pone.0011147 PubMedCrossRefGoogle Scholar
  11. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(23):4636–4641PubMedCrossRefGoogle Scholar
  12. Domenech P, Reed MB, Dowd CS, Manca C, Kaplan G, Barry CE 3rd (2004) The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 279(20):21257–21265. doi:10.1074/jbc.M400324200 PubMedCrossRefGoogle Scholar
  13. Drobniewski F, Balabanova Y, Nikolayevsky V, Ruddy M, Kuznetzov S, Zakharova S, Melentyev A, Fedorin I (2005) Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA 293(22):2726–2731. doi:10.1001/jama.293.22.2726 PubMedCrossRefGoogle Scholar
  14. Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, Kreiswirth B, Blazquez J, Jouan M, van Soolingen D, Gicquel B (2003) Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis 9(7):838–845. doi:10.3201/eid0907.020589 PubMedCrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340 PubMedCrossRefGoogle Scholar
  16. Finken M, Kirschner P, Meier A, Wrede A, Bottger EC (1993) Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9(6):1239–1246PubMedCrossRefGoogle Scholar
  17. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184(19):5479–5490PubMedCrossRefGoogle Scholar
  18. Gagneux S (2013) Genetic Diversity in Mycobacterium tuberculosis. Curr Top Microbiol Immunol. doi:10.1007/82_2013_329 PubMedGoogle Scholar
  19. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8(8):843–849. doi:10.3201/eid0805.020002 PubMedGoogle Scholar
  20. Gordhan BG, Andersen SJ, De Meyer AR, Mizrahi V (1996) Construction by homologous recombination and phenotypic characterization of a DNA polymerase domain polA mutant of Mycobacterium smegmatis. Gene 178(1–2):125–130PubMedCrossRefGoogle Scholar
  21. Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, Billman-Jacobe H, Lavender C, Fyfe J, Garcia–Garcia L, Leon CI, Bose M, Chaves F, Murray M, Eisenach KD, Sifuentes-Osornio J, Cave MD, Ponce de Leon A, Alland D (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50(8):2640–2649. doi:10.1128/AAC.00112-06 PubMedCrossRefGoogle Scholar
  22. Hazra TK, Izumi T, Venkataraman R, Kow YW, Dizdaroglu M, Mitra S (2000) Characterization of a novel 8-oxoguanine-DNA glycosylase activity in Escherichia coli and identification of the enzyme as endonuclease VIII. J Biol Chem 275(36):27762–27767. doi:10.1074/jbc.M004052200 PubMedGoogle Scholar
  23. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311. doi:10.1371/journal.pbio.0060311 PubMedCrossRefGoogle Scholar
  24. Huet G, Constant P, Malaga W, Laneelle MA, Kremer K, van Soolingen D, Daffe M, Guilhot C (2009) A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis: identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J Biol Chem 284(40):27101–27113. doi:10.1074/jbc.M109.041939 PubMedCrossRefGoogle Scholar
  25. Ilina EN, Shitikov EA, Ikryannikova LN, Alekseev DG, Kamashev DE, Malakhova MV, Parfenova TV, Afanas’ev MV, Ischenko DS, Bazaleev NA, Smirnova TG, Larionova EE, Chernousova LN, Beletsky AV, Mardanov AV, Ravin NV, Skryabin KG, Govorun VM (2013) Comparative genomic analysis of Mycobacterium tuberculosis drug resistant strains from Russia. PLoS ONE 8(2):e56577. doi:10.1371/journal.pone.0056577 PubMedCrossRefGoogle Scholar
  26. Ioerger TR, Koo S, No EG, Chen X, Larsen MH, Jacobs WR Jr, Pillay M, Sturm AW, Sacchettini JC (2009) Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PloS One 4(11):e7778. doi:10.1371/journal.pone.0007778 PubMedCrossRefGoogle Scholar
  27. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914PubMedGoogle Scholar
  28. Kubica T, Agzamova R, Wright A, Aziz MA, Rakishev G, Bismilda V, Richter E, Rusch-Gerdes S, Niemann S (2005) The Beijing genotype is a major cause of drug-resistant tuberculosis in Kazakhstan. Int J Tubercul Lung Dis 9(6):646–653Google Scholar
  29. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi:10.1038/nature03959 PubMedGoogle Scholar
  30. Mariam DH, Mengistu Y, Hoffner SE, Andersson DI (2004) Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48(4):1289–1294PubMedCrossRefGoogle Scholar
  31. Maus CE, Plikaytis BB, Shinnick TM (2005) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(8):3192–3197. doi:10.1128/AAC.49.8.3192-3197.2005 PubMedCrossRefGoogle Scholar
  32. Miyoshi-Akiyama T, Matsumura K, Kobayashi N, Maeda S, Kirikae T (2011) Genome sequence of clinical isolate Mycobacterium tuberculosis NCGM2209. J Bacteriol 193(23):6792. doi:10.1128/JB.06233-11 PubMedCrossRefGoogle Scholar
  33. Mizrahi V, Andersen SJ (1998) DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol Microbiol 29(6):1331–1339PubMedCrossRefGoogle Scholar
  34. Musser JM (1995) Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 8(4):496–514PubMedGoogle Scholar
  35. Nair J, Rouse DA, Bai GH, Morris SL (1993) The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol 10(3):521–527PubMedCrossRefGoogle Scholar
  36. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63(4):1096–1106. doi:10.1111/j.1365-2958.2006.05585.x PubMedCrossRefGoogle Scholar
  37. Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tubercle Lung Dis 79(1):3–29. doi:10.1054/tuld.1998.0002 CrossRefGoogle Scholar
  38. Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, El Sahly H, Moghazeh SL, Kreiswirth BN, Musser JM (2000) Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 44(2):326–336PubMedCrossRefGoogle Scholar
  39. Ramaswamy SV, Reich R, Dou SJ, Jasperse L, Pan X, Wanger A, Quitugua T, Graviss EA (2003) Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(4):1241–1250PubMedCrossRefGoogle Scholar
  40. Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, Mehta A (2008) Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs using the Bactec MGIT 960 System. Int J Tubercul Lung Dis 12(12):1449–1455Google Scholar
  41. Rusch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S (2006) Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol 44(3):688–692. doi:10.1128/JCM.44.3.688-692.2006 PubMedCrossRefGoogle Scholar
  42. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84PubMedCrossRefGoogle Scholar
  43. Shi R, Itagaki N, Sugawara I (2007) Overview of anti-tuberculosis (TB) drugs and their resistance mechanisms. Mini Rev Med Chem 7(11):1177–1185PubMedCrossRefGoogle Scholar
  44. Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2(3):164–168PubMedCrossRefGoogle Scholar
  45. Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, Cole ST, Jacobs WR Jr, Telenti A (1994) Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38(4):773–780PubMedCrossRefGoogle Scholar
  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  47. Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR Jr (1997) The EMB operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3(5):567–570PubMedCrossRefGoogle Scholar
  48. Tracevska T, Jansone I, Baumanis V, Marga O, Lillebaek T (2003) Prevalence of Beijing genotype in Latvian multidrug-resistant Mycobacterium tuberculosis isolates. Int J Tubercul Lung Dis 7(11):1097–1103Google Scholar
  49. Wade MM, Zhang Y (2004) Mechanisms of drug resistance in Mycobacterium tuberculosis. Front Biosci 9:975–994PubMedCrossRefGoogle Scholar
  50. Wang J, Liu Y, Zhang CL, Ji BY, Zhang LZ, Shao YZ, Jiang SL, Suzuki Y, Nakajima C, Fan CL, Ma YP, Tian GW, Hattori T, Ling H (2011) Genotypes and characteristics of clustering and drug susceptibility of Mycobacterium tuberculosis isolates collected in Heilongjiang Province, China. J Clin Microbiol 49(4):1354–1362. doi:10.1128/JCM.02274-10 PubMedCrossRefGoogle Scholar
  51. Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, Gillis TP (1998) Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42(7):1853–1857PubMedGoogle Scholar
  52. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96(22):12833–12838PubMedCrossRefGoogle Scholar
  53. Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S (1998) Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother 42(5):621–628PubMedCrossRefGoogle Scholar
  54. Yang C, Luo T, Sun G, Qiao K, Sun G, DeRiemer K, Mei J, Gao Q (2012) Mycobacterium tuberculosis Beijing strains favor transmission but not drug resistance in China. Clin Infect Dis 55(9):1179–1187. doi:10.1093/cid/cis670 PubMedCrossRefGoogle Scholar
  55. Yuen LK, Leslie D, Coloe PJ (1999) Bacteriological and molecular analysis of rifampin-resistant Mycobacterium tuberculosis strains isolated in Australia. J Clin Microbiol 37(12):3844–3850PubMedGoogle Scholar
  56. Zhang Y, Chen C, Liu J, Deng H, Pan A, Zhang L, Zhao X, Huang M, Lu B, Dong H, Du P, Chen W, Wan K (2011) Complete genome sequences of Mycobacterium tuberculosis strains CCDC5079 and CCDC5080, which belong to the Beijing family. J Bacteriol 193(19):5591–5592. doi:10.1128/JB.05452-11 PubMedCrossRefGoogle Scholar
  57. Zheng H, Lu L, Wang B, Pu S, Zhang X, Zhu G, Shi W, Zhang L, Wang H, Wang S, Zhao G, Zhang Y (2008) Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3(6):e2375. doi:10.1371/journal.pone.0002375 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wei Wu
    • 1
  • Huajun Zheng
    • 2
  • Lu Zhang
    • 1
  • Zilu Wen
    • 3
  • Shulin Zhang
    • 3
  • Hao Pei
    • 4
  • Guohua Yu
    • 1
  • Yongqiang Zhu
    • 2
  • Zhenling Cui
    • 5
  • Zhongyi Hu
    • 5
  • Honghai Wang
    • 1
  • Yao Li
    • 1
  1. 1.College of Life SciencesFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai-MOST Key Laboratory of Health and Disease GenomicsChinese National Human Genome Center at ShanghaiShanghaiPeople’s Republic of China
  3. 3.Department of Medical Microbiology and ParasitologyShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  4. 4.Wuxi Hospital of Infection DiseaseWuxiPeople’s Republic of China
  5. 5.Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Medical SchoolTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations