Advertisement

Vertical inheritance and bursts of transposition have shaped the evolution of the BS non-LTR retrotransposon in Drosophila

  • Adriana Granzotto
  • Fabrício R. Lopes
  • Cristina Vieira
  • Claudia M. A. CararetoEmail author
Original Paper

Abstract

The history of transposable elements over evolutionary time can often be partially reconstructed on the basis of genome analysis. In this study, we identified and extensively characterized the NLTR BS retrotransposon in 12 sequenced Drosophila genomes, by its sequence diversity within and among genomes, its degeneration pattern and its transcriptional activity. We show that the BS element has a variable copy number and patchy distribution within the Drosophila genus, that it is at distinct stages of the evolutionary cycle in the different Drosophila species and that its evolution is characterized by vertical transmission and by bursts of transposition in certain species.

Keywords

NLTR BS retrotransposon Transposition burst Transposable element vertical inheritance 

Abbreviations

LTR

Long terminal repeat

NLTR

Non-long terminal repeat

LINE

Long interspersed nuclear element

TE

Transposable element

Notes

Acknowledgments

Funding for this project was provided by the Brazilian agencies São Paulo Research Foundation (07/53097-0 to C.M.A.C and fellowship 07/50641-1 to A.G), the National Council for Scientific and Technological Development (to C.M.A.C) and the CAPES-PDEE (4666-08-9 to A.G.), as well as by the French Mobilité Internationale Rhône- Alpes project from the Région Rhône-Alpes (to C.V. and A.G.), the Centre National de la Recherche Scientifique/São Paulo Research Foundation (joint program to C.V. and C.M.A.C.), L’Agence Nationale de la Recherche GeneMobile (to C.V) and the Institute Universitaire de France (to C.V.). We thank R. Rebollo for her comments and technical help and M. Ghosh for correcting the English text.

Supplementary material

438_2011_629_MOESM1_ESM.doc (740 kb)
Supplementary material (DOC 740 kb)

References

  1. Almeida LM, Carareto CMA (2005) Multiple events of horizontal transfer of the Minos transposable element between Drosophila species. Mol Phylogenet Evol 35:583–594PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Arca B, Savakis C (2000) Distribution of the transposable element Minos in the genus Drosophila. Genetica 108:263–267PubMedCrossRefGoogle Scholar
  4. Arnault C, Dufournel I (1994) Genome and stresses: reactions against aggressions, behavior of transposable elements. Genetica 93:149–160PubMedCrossRefGoogle Scholar
  5. Bartolomé C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10(2):R22PubMedCrossRefGoogle Scholar
  6. Berezikov E, Bucheton A, Busseau I (2000) A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster. Genome Biol 1(6)Google Scholar
  7. Biémont C (1994) Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M’ strain of Drosophila melanogaster. J Mol Evol 39:466–472PubMedCrossRefGoogle Scholar
  8. Bingham P (1997) Cosuppression comes to the animals. Cell 90:385–387PubMedCrossRefGoogle Scholar
  9. Brookfield JF, Badge RM (1997) Population genetics models of transposable elements. Genetica 100:281–294PubMedCrossRefGoogle Scholar
  10. Brunet F, Godin F, Bazin C, Capy P (1999) Phylogenetic analysis of Mos1-like transposable elements in the Drosophilidae. J Mol Evol 49:760–768PubMedCrossRefGoogle Scholar
  11. Bucheton A, Vaury C, Chaboissier MC, Abad P, Pélisson A, Simonelig M (1992) I elements and the Drosophila genome. Genetica 86:175–190PubMedCrossRefGoogle Scholar
  12. Campuzano S, Balcells L, Villares R, Carramolino L, García-Alonso L, Modolell J (1986) Excess function hairy-wing mutations caused by gypsy and copia insertions within structural genes of the achaete-scute locus of Drosophila. Cell 44:303–312PubMedCrossRefGoogle Scholar
  13. Capy P, David JR, Hartl DL (1992) Evolution of the transposable element mariner in the Drosophila melanogaster species group. Genetica 86:37–46PubMedCrossRefGoogle Scholar
  14. Charlesworth B, Lapid A, Canada D (1992) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II Inferences on the nature of selection against elements. Genet Res 60:115–130PubMedCrossRefGoogle Scholar
  15. Daniels SB, Peterson K, Strausbaugh LD, Kidwell MG, Chovnick A (1990a) Evidence for horizontal transmission of the P-transposable element between Drosophila species. Genetics 124:339–355PubMedGoogle Scholar
  16. Daniels SB, Chovnick A, Boussy IA (1990b) Distribution of hobo transposable elements in the genus Drosophila. Mol Biol Evol 7:589–606PubMedGoogle Scholar
  17. Eggleston W, Johnson-Schlitz D, Engels W (1988) P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331:368–370PubMedCrossRefGoogle Scholar
  18. Eickbush TH, Furano AV (2002) Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12:669–674PubMedCrossRefGoogle Scholar
  19. Finnegan D (1985) Transposable Elements in Eukaryotes. International Review of Cytology-a Survey of Cell Biology 247:281–326Google Scholar
  20. González J, Macpherson JM, Messer PW, Petrov DA (2009) Inferring the strength of selection in Drosophila under complex demographic models. Mol Biol Evol 26:513–526PubMedCrossRefGoogle Scholar
  21. Granzotto A, Lopes FR, Lerat E, Vieira C, Carareto C (2009) The evolutionary dynamics of the Helena retrotransposon revealed by sequenced Drosophila genomes. BMC Evol Biol 9:174PubMedCrossRefGoogle Scholar
  22. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98Google Scholar
  24. Hey J, Kliman RM (1993) Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Biol Evol 10:804–822Google Scholar
  25. Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15:630–639PubMedGoogle Scholar
  26. Hutchison CA III, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, pp 593–617Google Scholar
  27. Jordan I, McDonald J (1998) Interelement selection in the regulatory region of the copia retrotransposon. J Mol Evol 47:670–676PubMedCrossRefGoogle Scholar
  28. Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:0084.1–20Google Scholar
  29. Khan H, Smit A, Boissinot S (2006) Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16:78–87PubMedCrossRefGoogle Scholar
  30. Kliman RM, Hey J (1993) DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics 133:375–387PubMedGoogle Scholar
  31. Koepfer HR (1987) Selection for sexual isolation between geographic forms of Drosophila mojavensis. I. Interactions between the selected forms. Evolution 41:37–48CrossRefGoogle Scholar
  32. Labrador M, Fontdevila A (1994) High transposition rate of Osvaldo, a new Drosophila buzzatti retrotransposon. Mol Gen Genet 245:661–674PubMedCrossRefGoogle Scholar
  33. Labrador M, Farré M, Utzet F, Fontdevilla A (1999) Interspecific hybridization increase transposition rates of Osvaldo. Mol Biol Evol 16:931–937PubMedGoogle Scholar
  34. Lachaise D, Silvain JF (2004) How two Afrotropical endemics made two cosmopolitan human commensals: the Drosophila melanogaster-D. simulans palaeogeographic riddle. Genetica 120:17–39PubMedCrossRefGoogle Scholar
  35. Le S, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320PubMedCrossRefGoogle Scholar
  36. Lerat E, Rizzon C, Biémont C (2003) Sequence divergence within transposable element families in the Drosophila melanogaster genome. Genome Res 13:1889–1896PubMedGoogle Scholar
  37. Loreto EL, Valente VL, Zaha A, Silva JC, Kidwell MG (2001) Drosophila mediopunctata P elements: a new example of horizontal transfer. J Hered 92:375–381PubMedCrossRefGoogle Scholar
  38. Loreto EL, Carareto CM, Capy P (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100:545–554PubMedCrossRefGoogle Scholar
  39. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605PubMedCrossRefGoogle Scholar
  40. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  41. Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2:e2PubMedCrossRefGoogle Scholar
  42. Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805PubMedGoogle Scholar
  43. Maside X, Assimacopoulos S, Charlesworth B (2000) Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster. Genet Res 75:275–284PubMedCrossRefGoogle Scholar
  44. McDonald JF (1998) Transposable elements, gene silencing and macroevolution. Trends Ecol Evol 13:94–95PubMedCrossRefGoogle Scholar
  45. Mizrokhi LJ, Mazo AM (1990) Evidence for horizontal transmission of the mobile element jockey between distant Drosophila species. Proc Natl Acad Sci USA 87:9216–9220Google Scholar
  46. Nuzhdin SV, Mackay TFC (1995) The genomic rate of transposable element movement in D. melanogaster. Mol Biol Evol 12:180–181PubMedGoogle Scholar
  47. Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. Bioessays 31:703–714PubMedCrossRefGoogle Scholar
  48. Pardue ML, Danilevskaya ON, Lowenhaupt K, Wong J, Erby K (1996) The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region. J Mol Evol 43:572–583PubMedCrossRefGoogle Scholar
  49. Petrov DA, Hartl DL (1997) Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene 205:279–289PubMedCrossRefGoogle Scholar
  50. Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302PubMedGoogle Scholar
  51. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 9:29–45Google Scholar
  52. Pinsker W, Haring E, Hagemann S, Miller WJ (2001) The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes. Chromosoma 110:148–158PubMedCrossRefGoogle Scholar
  53. Piriyapongsa J, Marinõ-Ramýrez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337PubMedCrossRefGoogle Scholar
  54. Rebollo R, Lerat E, Kleine LL, Biémont C, Vieira C (2008) Losing helena: the extinction of a drosophila line-like element. BMC Genomics 9:149PubMedCrossRefGoogle Scholar
  55. Robertson HM, Lampe DJ (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12:850–862PubMedGoogle Scholar
  56. Ruiz A, Heed W (1988) Host-plant specificity in the cactophilic Drosophila mulleri species complex. J Anim Ecol 57:237–249CrossRefGoogle Scholar
  57. Setta N, Van Sluys MA, Capy P, Carareto CM (2009) Multiple invasions of Gypsy and Micropia retroelements in genus Zaprionus and melanogaster subgroup of the genus Drosophila. BMC Evol Biol 9:279PubMedCrossRefGoogle Scholar
  58. Suh D, Choi E, Yamazaki T, Harada K (1995) Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol Biol Evol 12:748–758PubMedGoogle Scholar
  59. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  60. Terzian C, Ferraz C, Demaille J, Bucheton A (2000) Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol Biol Evol 17:908–914PubMedGoogle Scholar
  61. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  62. Udomkit A, Forbes S, Dalgleish G, Finnegan DJ (1995) BS a novel LINE-like element in Drosophila melanogaster. Nucleic Acids Res 23:1354–1358PubMedCrossRefGoogle Scholar
  63. Vieira C, Biémont C (1997) Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans. Mol Biol Evol 14:185–188PubMedGoogle Scholar
  64. Vieira C, Lepetit D, Dumont S, Biémont C (1999) Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol Biol Evol 16:1251–1255PubMedGoogle Scholar
  65. Wasserman M, Koepfer HR (1977) Character displacement for sexual isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 31:812–823CrossRefGoogle Scholar
  66. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  67. Wisotzkey RG, Felger I, Hunt JA (1997) Biogeographic analysis of the Uhu and LOA elements in the Hawaiian Drosophila. Chromosoma 106:465–477PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Adriana Granzotto
    • 1
  • Fabrício R. Lopes
    • 1
  • Cristina Vieira
    • 2
  • Claudia M. A. Carareto
    • 1
    Email author
  1. 1.Laboratory of Molecular Evolution, Department of BiologyUNESP, São Paulo State UniversitySão José do Rio PretoBrazil
  2. 2.Laboratoire de Biométrie et Biologie EvolutiveUniversité de Lyon; Université Lyon 1; CNRS; UMR 5558VilleurbanneFrance

Personalised recommendations