Molecular Genetics and Genomics

, Volume 285, Issue 4, pp 341–354

Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms

  • Carlos Romá-Mateo
  • Almudena Sacristán-Reviriego
  • Nicola J. Beresford
  • José Antonio Caparrós-Martín
  • Francisco A. Culiáñez-Macià
  • Humberto Martín
  • María Molina
  • Lydia Tabernero
  • Rafael Pulido
Original Paper
  • 433 Downloads

Abstract

Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including parasite organisms responsible for infectious human diseases.

Keywords

Phosphatase Phosphorylation 

Supplementary material

438_2011_611_MOESM1_ESM.pdf (39 kb)
Supplementary material 1 (PDF 39 kb)

References

  1. Aceti DJ et al (2008) Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000. Proteins 73:241–253PubMedCrossRefGoogle Scholar
  2. Addinall SG et al (2008) A genomewide suppressor and enhancer analysis of cdc13–1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180:2251–2266PubMedCrossRefGoogle Scholar
  3. Alic N, Higgins VJ, Dawes IW (2001) Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide*. Mol Biol Cell 12:1801–1810PubMedGoogle Scholar
  4. Alonso A, Rojas A, Godzik A, Mustelin T (2004a) The dual-specific protein tyrosine phosphatase family. In: Ariño J, Alexander DR (eds) Topics in current genetics: protein phosphatases. Springer, Berlin, pp 333–358Google Scholar
  5. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T et al (2004b) Protein tyrosine phosphatases in the human genome. Cell 117:699–711PubMedCrossRefGoogle Scholar
  6. Andreeva AV, Kutuzov MA (2008) Protozoan protein tyrosine phosphatases. Int J Parasitol 38:1279–1295PubMedCrossRefGoogle Scholar
  7. Attwood TK, Findlay JB (1993) Design of a discriminating fingerprint for G-protein-coupled receptors. Protein Eng 6:167–176PubMedCrossRefGoogle Scholar
  8. Attwood TK, Findlay JB (1994) Fingerprinting G-protein-coupled receptors. Protein Eng 7:195–203PubMedCrossRefGoogle Scholar
  9. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041PubMedCrossRefGoogle Scholar
  10. Bartels S et al (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–2897PubMedCrossRefGoogle Scholar
  11. Begley MJ, Dixon JE (2005) The structure and regulation of myotubularin phosphatases. Curr Opin Struct Biol 15:614–620PubMedCrossRefGoogle Scholar
  12. Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L (2007) MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 406:13–18PubMedCrossRefGoogle Scholar
  13. Beresford NJ, Saville C, Bennett HJ, Roberts IS, Tabernero L (2010) A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis. BMC Genomics 11:457PubMedCrossRefGoogle Scholar
  14. Brenchley R et al (2007) The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics 8:434PubMedCrossRefGoogle Scholar
  15. Care A et al (2004) A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae. Genetics 166:707–719PubMedCrossRefGoogle Scholar
  16. Chen W, Wilborn M, Rudolph J (2000) Dual-specific Cdc25B phosphatase: in search of the catalytic acid. Biochemistry 39:10781–10789PubMedCrossRefGoogle Scholar
  17. Collins SR et al (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450PubMedGoogle Scholar
  18. Denu JM, Zhou G, Guo Y, Dixon JE (1995) The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase. Biochemistry 34:3396–3403PubMedCrossRefGoogle Scholar
  19. Doi K et al (1994) MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J 13:61–70PubMedGoogle Scholar
  20. Dudley AM, Janse DM, Tanay A, Shamir R, Church GM (2005) A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 1:2005 0001Google Scholar
  21. Felsentein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  22. Flandez M, Cosano IC, Nombela C, Martin H, Molina M (2004) Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J Biol Chem 279:11027–11034PubMedCrossRefGoogle Scholar
  23. Fox GC et al (2007) Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases. Nature 447:487–492PubMedCrossRefGoogle Scholar
  24. Gingras MC et al (2009) HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One 4:e5105PubMedCrossRefGoogle Scholar
  25. Gonzalez A, Ruiz A, Casamayor A, Arino J (2009) Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1. Mol Cell Biol 29:2876–2888PubMedCrossRefGoogle Scholar
  26. Gross S et al (2002) Multimerization of the protein-tyrosine phosphatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2 and IA-2beta with receptor PTPs (RPTPs) inhibition of RPTPalpha enzymatic activity. J Biol Chem 277:48139–48145PubMedCrossRefGoogle Scholar
  27. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  28. Hahn JS, Thiele DJ (2002) Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284PubMedCrossRefGoogle Scholar
  29. Hampsey M (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133PubMedCrossRefGoogle Scholar
  30. Hinton SD, Myers MP, Roggero VR, Allison LA, Tonks NK (2010) The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. Biochem J 427:349–357PubMedCrossRefGoogle Scholar
  31. Hirasaki M, Kaneko Y, Harashima S (2008) Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae. Gene 409:34–43PubMedCrossRefGoogle Scholar
  32. Hirasaki M et al (2010) Deciphering cellular functions of protein phosphatases by comparison of gene expression profiles in Saccharomyces cerevisiae. J Biosci Bioeng 109:433–441PubMedCrossRefGoogle Scholar
  33. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574PubMedCrossRefGoogle Scholar
  34. Kennelly PJ (2001) Protein phosphatases—a phylogenetic perspective. Chem Rev 101:2291–2312PubMedCrossRefGoogle Scholar
  35. Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61:1147–1166PubMedCrossRefGoogle Scholar
  36. Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256PubMedCrossRefGoogle Scholar
  37. Lee JO et al (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334PubMedCrossRefGoogle Scholar
  38. Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol 54:63–92PubMedCrossRefGoogle Scholar
  39. Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247–279PubMedCrossRefGoogle Scholar
  40. Martin H, Flandez M, Nombela C, Molina M (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16PubMedCrossRefGoogle Scholar
  41. Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417:401–409PubMedCrossRefGoogle Scholar
  42. Nordle AK, Rios P, Gaulton A, Pulido R, Attwood TK, Tabernero L (2007) Functional assignment of MAPK phosphatase domains. Proteins 69:19–31PubMedCrossRefGoogle Scholar
  43. Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26:3203–3213PubMedCrossRefGoogle Scholar
  44. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  45. Parsons AB et al (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69PubMedCrossRefGoogle Scholar
  46. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  47. Pincus D, Letunic I, Bork P, Lim WA (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci USA 105:9680–9684PubMedCrossRefGoogle Scholar
  48. Reinke A, Chen JC, Aronova S, Powers T (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 281:31616–31626PubMedCrossRefGoogle Scholar
  49. Rieger KJ, El-Alama M, Stein G, Bradshaw C, Slonimski PP, Maundrell K (1999) Chemotyping of yeast mutants using robotics. Yeast 15:973–986PubMedCrossRefGoogle Scholar
  50. Romá-Mateo C, Ríos P, Tabernero L, Attwood TK, Pulido R (2007) A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol 374:899–909PubMedCrossRefGoogle Scholar
  51. Sakumoto N, Matsuoka I, Mukai Y, Ogawa N, Kaneko Y, Harashima S (2002) A series of double disruptants for protein phosphatase genes in Saccharomyces cerevisiae and their phenotypic analysis. Yeast 19:587–599PubMedCrossRefGoogle Scholar
  52. Torii S (2009) Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr J 56:639–648PubMedCrossRefGoogle Scholar
  53. Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N, Paszkowski J (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15:699–709PubMedCrossRefGoogle Scholar
  54. Ulm R et al (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21:6483–6493PubMedCrossRefGoogle Scholar
  55. Wilkes JM, Doerig C (2008) The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 9:412PubMedCrossRefGoogle Scholar
  56. Winter G, Hazan R, Bakalinsky AT, Abeliovich H (2008) Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy 4:28–36PubMedGoogle Scholar
  57. Wishart MJ, Dixon JE (1998) Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 23:301–306PubMedCrossRefGoogle Scholar
  58. Xie MW et al (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci USA 102:7215–7220PubMedCrossRefGoogle Scholar
  59. Yuvaniyama J, Denu JM, Dixon JE, Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science 272:1328–1331PubMedCrossRefGoogle Scholar
  60. Zhou H, Luo Y, Huang S (2010) Updates of mTOR inhibitors. Anticancer Agents Med Chem 10:571–581PubMedGoogle Scholar
  61. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Carlos Romá-Mateo
    • 1
    • 5
  • Almudena Sacristán-Reviriego
    • 2
  • Nicola J. Beresford
    • 3
    • 6
  • José Antonio Caparrós-Martín
    • 4
  • Francisco A. Culiáñez-Macià
    • 4
  • Humberto Martín
    • 2
  • María Molina
    • 2
  • Lydia Tabernero
    • 3
  • Rafael Pulido
    • 1
  1. 1.Centro de Investigación Príncipe FelipeValenciaSpain
  2. 2.Facultad de Farmacia, Universidad Complutense de MadridMadridSpain
  3. 3.Faculty of Life Sciences, Michael Smith Building, University of ManchesterManchesterUK
  4. 4.Instituto de Biologia Molecular y Celular de Plantas Primo-Yúfera, Universidad Politécnica de Valencia-CSICValenciaSpain
  5. 5.Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)ValenciaSpain
  6. 6.Mycobacterial Research, National Institute for Medical Research the RidgewayMill Hill, LondonUK

Personalised recommendations