Molecular Genetics and Genomics

, Volume 285, Issue 2, pp 125–149 | Cite as

Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling

  • Manuel J. Villa-García
  • Myung Sun Choi
  • Flora I. Hinz
  • María L. Gaspar
  • Stephen A. Jesch
  • Susan A. Henry
Original Paper


Inositol auxotrophy (Ino phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.


Yeast Inositol auxotrophy Inositol Lipid metabolism Stress response 



Inositol auxotrophy


RNA polymerase II




Phosphatidic acid


Endoplasmic reticulum






Protein kinase C–cell wall integrity


Unfolded protein response


AMP-dependant kinase


High osmolarity glycerol


ER-associated protein degradation


Target of rapamycin


cAMP-protein kinase A


Mitogen activated protein kinase


Open reading frame


Gene Ontology


Saccharomyces genome database


1% yeast extract, 2% bactopeptone, 2% glucose












Lyso-phosphatidic acid




Dihydroxyacetone phosphate




Inositol 1,4,5-triphosphate









This work was supported by National Institutes of Health Grant GM019629 (to SAH.)

Supplementary material

438_2010_592_MOESM1_ESM.pdf (122 kb)
Supplementary material 1 (PDF 122 kb)
438_2010_592_MOESM2_ESM.pdf (299 kb)
Supplementary material 2 (PDF 299 kb)
438_2010_592_MOESM3_ESM.xls (101 kb)
Supplementary material 3 (XLS 101 kb)


  1. Alcazar-Roman AR, Wente SR (2008) Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 117:1–13PubMedCrossRefGoogle Scholar
  2. Alvarez-Vasquez F, Sims KJ, Cowart LA, Okamoto Y, Voit EO, Hannun YA (2005) Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature 433:425–430PubMedCrossRefGoogle Scholar
  3. Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349PubMedGoogle Scholar
  4. Arndt KM, Ricupero-Hovasse S, Winston F (1995) TBP mutants defective in activated transcription in vivo. EMBO J 14:1490–1497PubMedGoogle Scholar
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  6. Atkinson KD, Kolat AI, Henry SA (1977) Osmotic imbalance in inositol-starved spheroplasts of Saccharomyces cerevisiae. J Bacteriol 132:806–817PubMedGoogle Scholar
  7. Audhya A, Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2:593–605PubMedCrossRefGoogle Scholar
  8. Bachhawat N, Ouyang Q, Henry SA (1995) Functional characterization of an inositol-sensitive upstream activation sequence in yeast: a cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J Biol Chem 270:25087–25095PubMedCrossRefGoogle Scholar
  9. Bailis AM, Lopes JM, Kohlwein SD, Henry SA (1992) cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae. Nucl Acids Res 20:1411–1418PubMedCrossRefGoogle Scholar
  10. Barlowe C (2002) COPII-dependent transport from the endoplasmic reticulum. Curr Opin Cell Biol 14:417–422PubMedCrossRefGoogle Scholar
  11. Becker GW, Lester RL (1977) Changes in phospholipids of Saccharomyces cerevisiae associated with inositol-less death. J Biol Chem 252:8684–8691PubMedGoogle Scholar
  12. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  13. Betz JL, Chang M, Washburn TM, Porter SE, Mueller CL, Jaehning JA (2002) Phenotypic analysis of Paf1/RNA polymerase II complex mutations reveals connections to cell cycle regulation, protein synthesis, and lipid and nucleic acid metabolism. Mol Genet Genomics 268:272–285PubMedCrossRefGoogle Scholar
  14. Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3, 5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156:1015–1028PubMedCrossRefGoogle Scholar
  15. Boumann HA, Damen MJ, Versluis C, Heck AJ, de Kruijff B, de Kroon AI (2003) The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling. Biochemistry 42:3054–3059PubMedCrossRefGoogle Scholar
  16. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132PubMedCrossRefGoogle Scholar
  17. Brice SE, Alford CW, Cowart LA (2009) Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J Biol Chem 284:7588–7596PubMedCrossRefGoogle Scholar
  18. Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2:e342PubMedCrossRefGoogle Scholar
  19. Bungard D, Reed M, Winter E (2004) RSC1 and RSC2 are required for expression of mid-late sporulation-specific genes in Saccharomyces cerevisiae. Eukaryot Cell 3:910–918PubMedCrossRefGoogle Scholar
  20. Carman GM, Henry SA (1989) Phospholipid biosynthesis in yeast. Ann Rev Biochem 58:635–669PubMedCrossRefGoogle Scholar
  21. Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38:361–399PubMedCrossRefGoogle Scholar
  22. Carman GM, Henry SA (2007) Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 282:37293–37297PubMedCrossRefGoogle Scholar
  23. Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem 271:13293–13296PubMedCrossRefGoogle Scholar
  24. Chai B, Hsu JM, Du J, Laurent BC (2002) Yeast RSC function is required for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 161:575–584PubMedGoogle Scholar
  25. Chang HJ (2001) Role of the unfolded protein response pathway in phospholipid biosynthesis and membrane trafficking in Saccharomyces cerevisiae. Ph.D. thesis, Carnegie Mellon University, PittsburghGoogle Scholar
  26. Chang Q, Petrash JM (2008) Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. Biochim Biophys Acta 1783:237–245PubMedCrossRefGoogle Scholar
  27. Chang HJ, Jesch SA, Gaspar ML, Henry SA (2004) Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae. Genetics 168:1899–1913PubMedCrossRefGoogle Scholar
  28. Chen IW, Charalampous FC (1964) Biochemical studies on inositol. VII. Biosynthesis of inositol by a soluble enzyme system. J Biol Chem 239:1905–1910PubMedGoogle Scholar
  29. Chen IW, Charalompous FC (1964) Mode of conversion of glucose-6-P to inositol and the role of DPN and NH4 + ions. Biochem Biophys Res Commun 17:521–526CrossRefGoogle Scholar
  30. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M et al (1998) SGD: Saccharomyces genome database. Nucleic Acids Res 26:73–79PubMedCrossRefGoogle Scholar
  31. Cohen TJ, Mallory MJ, Strich R, Yao TP (2008) Hos2p/Set3p deacetylase complex signals secretory stress through the Mpk1p cell integrity pathway. Eukaryot Cell 7:1191–1199PubMedCrossRefGoogle Scholar
  32. Cowart LA, Okamoto Y, Pinto FR, Gandy JL, Almeida JS, Hannun YA (2003) Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling. J Biol Chem 278:30328–30338PubMedCrossRefGoogle Scholar
  33. Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206PubMedCrossRefGoogle Scholar
  34. Cox JS, Chapman RE, Walter P (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8:1805–1814PubMedGoogle Scholar
  35. Culbertson MR, Henry SA (1975) Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80:23–40PubMedGoogle Scholar
  36. Culbertson MR, Donahue TF, Henry SA (1976) Control of inositol biosynthesis in Saccharomyces cerevisiae: inositol-phosphate synthetase mutants. J Bacteriol 126:243–250PubMedGoogle Scholar
  37. De Camilli P, Emr SD, McPherson PS, Novick P (1996) Phosphoinositides as regulators in membrane traffic. Science 271:1533–1539PubMedCrossRefGoogle Scholar
  38. Dean-Johnson M, Henry SA (1989) Biosynthesis of inositol in yeast: Primary structure of myo-inositol 1-phosphate synthase locus and functional characterization of its structural gene, the INO1 locus. J Biol Chem 264:1274–1283PubMedGoogle Scholar
  39. Demczuk A, Guha N, Nguyen PH, Desai P, Chang J, Guzinska K, Rollins J, Ghosh CC, Goodwin L, Vancura A (2008) Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes. Eukaryot Cell 7:967–979PubMedCrossRefGoogle Scholar
  40. Dickson RC (2008) Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49:909–921PubMedCrossRefGoogle Scholar
  41. Donahue TF, Henry SA (1981) Inositol mutants of Saccharomyces cerevisiae: mapping the ino1 locus and characterizing alleles of the ino1, ino2 and ino4 loci. Genetics 98:491–503PubMedGoogle Scholar
  42. Dowd SR, Bier ME, Patton-Vogt JL (2001) Turnover of phosphatidylcholine in Saccharomyces cerevisiae. The role of the CDP-choline pathway. J Biol Chem 276:3756–3763PubMedCrossRefGoogle Scholar
  43. Driessen HP, de Jong WW, Tesser GI, Bloemendal H (1985) The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem 18:281–325PubMedCrossRefGoogle Scholar
  44. Dubois E, Scherens B, Vierendeels F, Ho MM, Messenguy F, Shears SB (2002) In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J Biol Chem 277:23755–23763PubMedCrossRefGoogle Scholar
  45. Ebbert R, Birkmann A, Schuller HJ (1999) The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32:741–751PubMedCrossRefGoogle Scholar
  46. Eriksson P, Andre L, Ansell R, Blomberg A, Adler L (1995) Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17:95–107PubMedCrossRefGoogle Scholar
  47. Fernandez-Murray JP, Gaspard GJ, Jesch SA, McMaster CR (2009) NTE1-encoded phosphatidylcholine phospholipase b regulates transcription of phospholipid biosynthetic genes. J Biol Chem 284:36034–36046PubMedCrossRefGoogle Scholar
  48. Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625PubMedCrossRefGoogle Scholar
  49. Gansheroff LJ, Dollard C, Tan P, Winston F (1995) The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139:523–536PubMedGoogle Scholar
  50. Gaspar ML, Aregullin MA, Jesch SA, Henry SA (2006) Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae. J Biol Chem 281:22773–22785PubMedCrossRefGoogle Scholar
  51. Gaspar ML, Jesch SA, Viswanatha R, Antosh AL, Brown WJ, Kohlwein SD, Henry SA (2008) A block in endoplasmic reticulum-to-Golgi trafficking inhibits phospholipid synthesis and induces neutral lipid accumulation. J Biol Chem 283:25735–25751PubMedCrossRefGoogle Scholar
  52. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391PubMedCrossRefGoogle Scholar
  53. Gilstring CF, Melin-Larsson M, Ljungdahl PO (1999) Shr3p mediates specific COPII coatomer-cargo interactions required for the packaging of amino acid permeases into ER-derived transport vesicles. Mol Biol Cell 10:3549–3565PubMedGoogle Scholar
  54. Greenberg ML, Lopes JM (1996) Genetic regulation of phospholipid biosynthesis in yeast. Microbiol Rev 60:1–20PubMedGoogle Scholar
  55. Griac P, Henry SA (1999) The yeast inositol-sensitive upstream activating sequence, UASINO, responds to nitrogen availability. Nucleic Acids Res 27:2043–2050PubMedCrossRefGoogle Scholar
  56. Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O, Kajiwara K, Wakabayashi H, Ivanova T, Castillon GA, Piccolis M et al (2009) Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell 20:2083–2095PubMedCrossRefGoogle Scholar
  57. Hanson BA, Lester RL (1980) Effects of inositol starvation on phospholipid and glycan syntheses in Saccharomyces cerevisiae. J Bacteriol 142:79–89PubMedGoogle Scholar
  58. Hanson BA, Lester RL (1982) Effect of inositol starvation on the in vitro syntheses of mannan and N-acetylglucosaminylpyrophosphoryldolichol in Saccharomyces cerevisiae. J Bacteriol 151:334–342PubMedGoogle Scholar
  59. Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680PubMedCrossRefGoogle Scholar
  60. Henry SA, Patton-Vogt JL (1998) Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. Prog Nucleic Acid Res Mol Biol 61:133–179PubMedCrossRefGoogle Scholar
  61. Henry SA, Atkinson KD, Kolat AI, Culbertson MR (1977) Growth and metabolism of inositol-starved Saccharomyces cerevisiae. J Bacteriol 130:472–484PubMedGoogle Scholar
  62. Hirsch JP, Henry SA (1986) Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol Cell Biol 6:3320–3328PubMedGoogle Scholar
  63. Hirschhorn JN, Brown SA, Clark CD, Winston F (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6:2288–2298PubMedCrossRefGoogle Scholar
  64. Hirschman JE, Balakrishnan R, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hong EL, Livstone MS, Nash R et al (2006) Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome. Nucleic Acids Res 34:D442–D445PubMedCrossRefGoogle Scholar
  65. Ho HL, Shiau YS, Chen MY (2005) Saccharomyces cerevisiaeTSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet 47:273–288PubMedCrossRefGoogle Scholar
  66. Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45PubMedCrossRefGoogle Scholar
  67. Horiuchi J, Silverman N, Pina B, Marcus GA, Guarente L (1997) ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol Cell Biol 17:3220–3228PubMedGoogle Scholar
  68. Hosaka K, Nikawa J, Kodaki T, Yamashita S (1992) A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111:352–358PubMedGoogle Scholar
  69. Hosaka K, Nikawa J, Kodaki T, Ishizu H, Yamashita S (1994) Cloning and sequence of the SCS3 gene which is required for inositol prototrophy in Saccharomyces cerevisiae. J Biochem 116:1317–1321PubMedGoogle Scholar
  70. Issel-Tarver L, Christie KR, Dolinski K, Andrada R, Balakrishnan R, Ball CA, Binkley G, Dong S, Dwight SS, Fisk DG et al (2002) Saccharomyces genome database. Methods Enzymol 350:329–346PubMedCrossRefGoogle Scholar
  71. Jesch SA, Henry SA (2005) Yeast inositol phospholipids: synthesis, regulation, and involvement in membrane trafficking and lipid signaling. In: Daum G (ed) Cell biology and dynamics of yeast lipids. Research Signpost, Kerala, pp 105–131Google Scholar
  72. Jesch SA, Zhao X, Wells MT, Henry SA (2005) Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem 280:9106–9118PubMedCrossRefGoogle Scholar
  73. Jesch SA, Liu P, Zhao X, Wells MT, Henry SA (2006) Multiple endoplasmic reticulum-to-nucleus signaling pathways coordinate phospholipid metabolism with gene expression by distinct mechanisms. J Biol Chem 281:24070–24083PubMedCrossRefGoogle Scholar
  74. Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196PubMedCrossRefGoogle Scholar
  75. Kagiwada S, Zen R (2003) Role of the yeast VAP homolog, Scs2p, in INO1 expression and phospholipid metabolism. J Biochem 133:515–522PubMedCrossRefGoogle Scholar
  76. Kagiwada S, Hosaka K, Murata M, Nikawa J, Takatsuki A (1998) The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. J Bacteriol 180:1700–1708PubMedGoogle Scholar
  77. Kajiwara K, Watanabe R, Pichler H, Ihara K, Murakami S, Riezman H, Funato K (2008) Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol Biol Cell 19:2069–2082PubMedCrossRefGoogle Scholar
  78. Kearns BG, McGee TP, Mayinger P, Gedvilaite A, Phillips SE, Kagiwada S, Bankaitis VA (1997) Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105PubMedCrossRefGoogle Scholar
  79. Keith AD, Pollard EC, Snipes W, Henry SA, Culbertson MR (1977) Inositol-less death in yeast results in a simultaneous increase in intracellular viscosity. Biophys J 17:205–212PubMedCrossRefGoogle Scholar
  80. Kelley MJ, Bailis AM, Henry SA, Carman GM (1988) Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by inositol: inositol is an inhibitor of phosphatidylserine synthase activity. J Biol Chem 263:18078–18084PubMedGoogle Scholar
  81. Kodaki T, Nikawa J, Hosaka K, Yamashita S (1991) Functional analysis of the regulatory region of the yeast phosphatidylserine synthase gene, PSS. J Biochem 173:7992–7995Google Scholar
  82. Kodaki T, Hosaka K, Nikawa J, Yamashita S (1995) The SNF2/SWI2/GAM1/TYE3/RIC1 gene is involved in the coordinate regulation of phospholipid synthesis in Saccharomyces cerevisiae. J Biochem 117:362–368PubMedCrossRefGoogle Scholar
  83. Koleske AJ, Buratowski S, Nonet M, Young RA (1992) A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69:883–894PubMedCrossRefGoogle Scholar
  84. Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston M, Shilatifard A (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277:10753–10755PubMedCrossRefGoogle Scholar
  85. Larsson K, Ansell R, Eriksson P, Adler L (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10:1101–1111PubMedCrossRefGoogle Scholar
  86. Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818PubMedCrossRefGoogle Scholar
  87. Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4:201–213PubMedCrossRefGoogle Scholar
  88. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291PubMedCrossRefGoogle Scholar
  89. Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22:2025–2035PubMedCrossRefGoogle Scholar
  90. Loewen CJR, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647PubMedCrossRefGoogle Scholar
  91. Loewy BS, Henry SA (1984) The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes. Mol Cell Biol 4:2479–2485PubMedGoogle Scholar
  92. Longtine MS, McKenzie A III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961PubMedCrossRefGoogle Scholar
  93. Lopes JM, Henry SA (1991) Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucl Acids Res 19:3987–3994PubMedCrossRefGoogle Scholar
  94. Lopes JM, Hirsch JP, Chorgo PA, Schulze KL, Henry SA (1991) Analysis of sequences in the INO1 promoter that are involved in its regulation by phospholipid precursors. Nucl Acids Res 19:1687–1693PubMedCrossRefGoogle Scholar
  95. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449PubMedCrossRefGoogle Scholar
  96. Majerus PW, York JD (2009) Phosphoinositide phosphatases and disease. J Lipid Res 50(Suppl):S249–S254PubMedCrossRefGoogle Scholar
  97. Majumder AL, Johnson MD, Henry SA (1997) 1L-myo-inositol 1-phosphate synthase. Biochim Biophys Acta 1348:245–256PubMedGoogle Scholar
  98. Michell RH (2007) Evolution of the diverse biological roles of inositols. Biochem Soc Symp, pp 223–246Google Scholar
  99. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98:12902–12907PubMedCrossRefGoogle Scholar
  100. Morano KA, Thiele DJ (1999) The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo. EMBO J 18:5953–5962PubMedCrossRefGoogle Scholar
  101. Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274:5202–5210PubMedCrossRefGoogle Scholar
  102. Neiman AM, Mhaiskar V, Manus V, Galibert F, Dean N (1997) Saccharomyces cerevisiae HOC1, a suppressor of pkc1, encodes a putative glycosyltransferase. Genetics 145:637–645PubMedGoogle Scholar
  103. Nikawa J-I, Yamashita S (1992) IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol prototrophy in Saccharomyces cerevisiae. Mol Microbiol 6:1441–1446PubMedCrossRefGoogle Scholar
  104. Nikawa J, Kodaki T, Yamashita S (1987) Primary structure and disruption of the phosphatidylinositol synthase gene of Saccharomyces cerevisiae. J Biol Chem 262:4876–4881PubMedGoogle Scholar
  105. Nikawa J, Sugiyama M, Hayashi K, Nakashima A (1997) Suppression of the Saccharomyces cerevisiae hac1/ire15 mutation by yeast genes and human cDNAs. Gene 201:5–10PubMedCrossRefGoogle Scholar
  106. Nikoloff DM, Henry SA (1994) Functional characterization of the INO2 gene of Saccharomyces cerevisiae. J Biol Chem 269:7402–7411PubMedGoogle Scholar
  107. Nikoloff DM, McGraw P and Henry SA (1992) The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucl Acids Res 20:3253Google Scholar
  108. Nonet ML, Young RA (1989) Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123:715–724PubMedGoogle Scholar
  109. Novick P, Schekman R (1979) Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 76:1858–1862PubMedCrossRefGoogle Scholar
  110. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215PubMedCrossRefGoogle Scholar
  111. Nunez LR, Jesch SA, Gaspar ML, Almaguer C, Villa-Garcia M, Ruiz-Noriega M, Patton-Vogt J, Henry SA (2008) Cell wall integrity MAPK pathway is essential for lipid homeostasis. J Biol Chem 283:34204–34217PubMedCrossRefGoogle Scholar
  112. Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011PubMedCrossRefGoogle Scholar
  113. Ouyang Q, Ruiz-Noriega M, Henry SA (1999) The REG1 gene product is required for repression of INO1 and other inositol-sensitive upstream activating sequence-containing genes of yeast. Genetics 152:89–100PubMedGoogle Scholar
  114. Patton-Vogt JL, Griac P, Sreenivas A, Bruno V, Dowd S, Swede MJ, Henry SA (1997) Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J Biol Chem 272:20873–20883PubMedCrossRefGoogle Scholar
  115. Perrot M, Massoni A, Boucherie H (2008) Sequence requirements for Nalpha-terminal acetylation of yeast proteins by NatA. Yeast 25:513–527PubMedCrossRefGoogle Scholar
  116. Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583PubMedCrossRefGoogle Scholar
  117. Philip B, Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280PubMedCrossRefGoogle Scholar
  118. Pijnappel WW, Schaft D, Roguev A, Shevchenko A, Tekotte H, Wilm M, Rigaut G, Seraphin B, Aasland R, Stewart AF (2001) The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15:2991–3004PubMedCrossRefGoogle Scholar
  119. Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420PubMedGoogle Scholar
  120. Polevoda B, Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3:reviews 0006Google Scholar
  121. Polevoda B, Sherman F (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 325:595–622PubMedCrossRefGoogle Scholar
  122. Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255PubMedCrossRefGoogle Scholar
  123. Ramirez RM, Ishida-Schick T, Krilowicz BL, Leish BA, Atkinson KD (1983) Plasma membrane expansion terminates in Saccharomyces cerevisiae secretion-defective mutants while phospholipid synthesis continues. J Bacteriol 154:1276–1283PubMedGoogle Scholar
  124. Rivas MP, Kearns BG, Xie Z, Guo S, Sekar MC, Hosaka K, Kagiwada S, York JD, Bankaitis VA (1999) Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy. Mol Biol Cell 10:2235–2250PubMedGoogle Scholar
  125. Roberts SM, Winston F (1996) SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol Cell Biol 16:3206–3213PubMedGoogle Scholar
  126. Santiago TC, Mamoun CB (2003) Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. J Biol Chem 278:38723–38730PubMedCrossRefGoogle Scholar
  127. Scafe C, Chao D, Lopes J, Hirsch JP, Henry S, Young RA (1990a) RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347:491–494PubMedCrossRefGoogle Scholar
  128. Scafe C, Martin C, Nonet M, Podos S, Okamura S, Young RA (1990b) Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol Cell Biol 10:1270–1275PubMedGoogle Scholar
  129. Schüller H-J, Richter K, Hoffmann B, Ebbert R, Schweizer E (1995) DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: Structural requirements as defined by saturation mutagenesis. FEBS Lett 370:149–152PubMedCrossRefGoogle Scholar
  130. Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schuller H-J (1995) Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucl Acids Res 23:230–237PubMedCrossRefGoogle Scholar
  131. Shen X, Ranallo R, Choi E, Wu C (2003a) Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol Cell 12:147–155PubMedCrossRefGoogle Scholar
  132. Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003b) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114PubMedCrossRefGoogle Scholar
  133. Shirra MK, Arndt KM (1999) Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics 152:73–87PubMedGoogle Scholar
  134. Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM (2001) Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21:5710–5722PubMedCrossRefGoogle Scholar
  135. Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405–413PubMedCrossRefGoogle Scholar
  136. Skinner HB, Alb JG Jr, Whitters EA, Helmkamp GM Jr, Bankaitis VA (1993) Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J 12:4775–4784PubMedGoogle Scholar
  137. Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA (1998) A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 273:16635–16638PubMedCrossRefGoogle Scholar
  138. Staleva L, Hall A, Orlow SJ (2004) Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent Manner. Mol Biol Cell 15:5574–5582PubMedCrossRefGoogle Scholar
  139. Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD (2006) The phosphatidylinositol 4, 5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26:5861–5875PubMedCrossRefGoogle Scholar
  140. Takatsuki A, Tamura G (1971) Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus. J Antibiot (Tokyo) 24:785–794Google Scholar
  141. Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA (2002) Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 277:43495–43504PubMedCrossRefGoogle Scholar
  142. Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29:653–663PubMedCrossRefGoogle Scholar
  143. Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM, Longo VD (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5:e1000467PubMedCrossRefGoogle Scholar
  144. White MJ, Hirsch JP, Henry SA (1991) The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem 266:863–872PubMedGoogle Scholar
  145. Whitters EA, Cleves AE, McGee TP, Skinner HB, Bankaitis VA (1993) SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122:79–94PubMedCrossRefGoogle Scholar
  146. Wilson JD, Barlowe C (2010) Yet1p and Yet3p, the yeast homologs of BAP29 and BAP31, interact with the ER translocation apparatus and are required for inositol prototrophy. J Biol Chem (Apr 8). doi: 10.1074/jbc.M109.080382
  147. Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173PubMedCrossRefGoogle Scholar
  148. Wu J, Carmen AA, Kobayashi R, Suka N, Grunstein M (2001) HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc Natl Acad Sci USA 98:4391–4396PubMedCrossRefGoogle Scholar
  149. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  150. Yip CL, Welch SK, Klebl F, Gilbert T, Seidel P, Grant FJ, O’Hara PJ, MacKay VL (1994) Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 91:2723–2727PubMedCrossRefGoogle Scholar
  151. Young BP, Shin JJ, Orij R, Chao JT, Li SC, Guan XL, Khong A, Jan E, Wenk MR, Prinz WA et al (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329:1085–1088PubMedCrossRefGoogle Scholar
  152. Yu VP, Reed SI (2004) Cks1 is dispensable for survival in Saccharomyces cerevisiae. Cell Cycle 3:1402–1404PubMedCrossRefGoogle Scholar
  153. Zaccheo O, Dinsdale D, Meacock PA, Glynn P (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Biol Chem 279:24024–24033PubMedCrossRefGoogle Scholar
  154. Zhang YQ, Rao R (2008) A spoke in the wheel: calcium spikes disrupt yeast cell cycle. Cell Cycle 7:870–873PubMedCrossRefGoogle Scholar
  155. Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276:41710–41716PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Manuel J. Villa-García
    • 1
  • Myung Sun Choi
    • 1
  • Flora I. Hinz
    • 1
  • María L. Gaspar
    • 1
  • Stephen A. Jesch
    • 1
  • Susan A. Henry
    • 1
  1. 1.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA

Personalised recommendations