Molecular Genetics and Genomics

, Volume 285, Issue 2, pp 91–100

Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae

  • Yvonne Jäschke
  • Juliane Schwarz
  • Diana Clausnitzer
  • Carina Müller
  • Hans-Joachim Schüller
Original Paper

Abstract

Repressor protein Opi1 is required to negatively regulate yeast structural genes of phospholipid biosynthesis in the presence of precursor molecules inositol and choline (IC). Opi1 interacts with the paired amphipathic helix 1 (PAH1) of pleiotropic corepressor Sin3, leading to recruitment of histone deacetylases (HDACs). Mutational analysis of the Opi1–Sin3 interaction domain (OSID) revealed that hydrophobic OSID residues L56, V59 and V67 of Opi1 are indispensable for gene repression. Our results also suggested that repression is not executed entirely via Sin3. Indeed, we could show that OSID contacts a second pleiotropic corepressor, Ssn6 (=Cyc8), which together with Tup1 is also able to recruit HDACs. Interestingly, mutations sin3 and ssn6 turned out as synthetically lethal. Our analysis further revealed that OSID not only binds to PAH1 but also interacts with tetratricopeptide repeats (TPR) of Ssn6. This interaction could no longer be observed with Opi1 OSID variants. To trigger gene repression, Opi1 must also interact with activator Ino2, using its activator interaction domain (AID). AID contains a hydrophobic structural motif reminiscent of a leucine zipper. Our mutational analysis of selected positions indeed confirmed that residues L333, L340, V343, V350, L354 and V361 are necessary for repression of Opi1 target genes.

Keywords

Phospholipid biosynthesis Saccharomyces cerevisiae Opi1 Transcriptional corepressor Sin3 Ssn6 

References

  1. Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349PubMedGoogle Scholar
  2. Berkey CD, Vyas VK, Carlson M (2004) Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot Cell 3:311–317CrossRefPubMedGoogle Scholar
  3. Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21:932–939CrossRefPubMedGoogle Scholar
  4. Brubaker K, Cowley SM, Huang K, Loo L, Yochum GS, Ayer DE, Eisenman RN, Radhakrishnan I (2000) Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 103:655–665CrossRefPubMedGoogle Scholar
  5. Carrozza MJ, Florens L, Swanson SK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005a) Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. Biochim Biophys Acta 1731:77–87PubMedGoogle Scholar
  6. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005b) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592CrossRefPubMedGoogle Scholar
  7. Chen M, Hancock LC, Lopes JM (2007) Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta 1771:310–321PubMedGoogle Scholar
  8. Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309:1007–1015CrossRefPubMedGoogle Scholar
  9. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662CrossRefPubMedGoogle Scholar
  10. Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278:50158–50162CrossRefPubMedGoogle Scholar
  11. Edmondson DG, Smith MM, Roth SY (1996) Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev 10:1247–1259CrossRefPubMedGoogle Scholar
  12. Fragiadakis GS, Tzamarias D, Alexandraki D (2004) Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 23:333–342CrossRefPubMedGoogle Scholar
  13. Gasperowicz M, Otto F (2005) Mammalian Groucho homologs: redundancy or specificity? J Cell Biochem 95:670–687CrossRefPubMedGoogle Scholar
  14. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534CrossRefPubMedGoogle Scholar
  15. Gounalaki N, Tzamarias D, Vlassi M (2000) Identification of residues in the TPR domain of Ssn6 responsible for interaction with the Tup1 protein. FEBS Lett 473:37–41CrossRefPubMedGoogle Scholar
  16. Graumann J, Dunipace LA, Seol JH, McDonald WH, Yates JR 3rd, Wold BJ, Deshaies RJ (2004) Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol Cell Proteomics 3:226–237CrossRefPubMedGoogle Scholar
  17. Green SR, Johnson AD (2004) Promoter-dependent roles for the Srb10 cyclin dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Mol Biol Cell 15:4191–4202CrossRefPubMedGoogle Scholar
  18. Grzenda A, Lomberk G, Zhang JS, Urrutia R (2009) Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789:443–450PubMedGoogle Scholar
  19. Heyken WT, Repenning A, Kumme J, Schüller HJ (2005) Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56:696–707CrossRefPubMedGoogle Scholar
  20. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183CrossRefPubMedGoogle Scholar
  21. Hudak KA, Lopes JM, Henry SA (1994) A pleiotropic phospholipid biosynthetic regulatory mutation in Saccharomyces cerevisiae is allelic to sin3 (sdi1, ume4, rpd1). Genetics 136:475–483PubMedGoogle Scholar
  22. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436PubMedGoogle Scholar
  23. Jones PL, Shi YB (2003) N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors. Curr Top Microbiol Immunol 274:237–268PubMedGoogle Scholar
  24. Kaadige MR, Lopes JM (2006) Analysis of Opi1p repressor mutants. Curr Genet 49:30–38CrossRefPubMedGoogle Scholar
  25. Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371CrossRefPubMedGoogle Scholar
  26. Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719CrossRefPubMedGoogle Scholar
  27. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643CrossRefPubMedGoogle Scholar
  28. Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22:2062–2074CrossRefPubMedGoogle Scholar
  29. Liu Z, Karmarkar V (2008) Groucho/Tup1 family co-repressors in plant development. Trends Plant Sci 13:137–144CrossRefPubMedGoogle Scholar
  30. Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647CrossRefPubMedGoogle Scholar
  31. Malavé TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84:437–443CrossRefPubMedGoogle Scholar
  32. McDonel P, Costello I, Hendrich B (2009) Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development. Int J Biochem Cell Biol 41:108–116CrossRefPubMedGoogle Scholar
  33. Mumberg D, Müller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768CrossRefPubMedGoogle Scholar
  34. Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297–1305CrossRefPubMedGoogle Scholar
  35. Polish JA, Kim JH, Johnston M (2005) How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583–594CrossRefPubMedGoogle Scholar
  36. Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307–1317CrossRefPubMedGoogle Scholar
  37. Puig S, Lau M, Thiele DJ (2004) Cti6 is an Rpd3-Sin3 histone deacetylase associated protein required for growth under iron-limiting conditions in Saccharomyces cerevisiae. J Biol Chem 279:30298–30306CrossRefPubMedGoogle Scholar
  38. Sahu SC, Swanson KA, Kang RS, Huang K, Brubaker K, Ratcliff K, Radhakrishnan I (2008) Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor. J Mol Biol 375:1444–1456CrossRefPubMedGoogle Scholar
  39. Schröder M, Clark R, Liu CY, Kaufman RJ (2004) The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO J 23:2281–2292CrossRefPubMedGoogle Scholar
  40. Schüller HJ, Hahn A, Tröster F, Schütz A, Schweizer E (1992) Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J 11:107–114PubMedGoogle Scholar
  41. Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schüller HJ (1995) Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res 23:230–237CrossRefPubMedGoogle Scholar
  42. Slekar KH, Henry SA (1995) SIN3 works through two different promoter elements to regulate INO1 gene expression in yeast. Nucleic Acids Res 23:1964–1969CrossRefPubMedGoogle Scholar
  43. Smith RL, Johnson AD (2000) A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of α2. Proc Natl Acad Sci USA 97:3901–3906CrossRefPubMedGoogle Scholar
  44. Smith RL, Redd MJ, Johnson AD (1995) The tetratricopeptide repeats of Ssn6 interact with the homeo domain of α2. Genes Dev 9:2903–2910CrossRefPubMedGoogle Scholar
  45. Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185CrossRefPubMedGoogle Scholar
  46. Spronk CA, Tessari M, Kaan AM, Jansen JF, Vermeulen M, Stunnenberg HG, Vuister GW (2000) The Mad1-Sin3B interaction involves a novel helical fold. Nat Struct Biol 7:1100–1104CrossRefPubMedGoogle Scholar
  47. Steber CM, Esposito RE (1995) UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression. Proc Natl Acad Sci USA 92:12490–12494CrossRefPubMedGoogle Scholar
  48. Sternberg PW, Stern MJ, Clark I, Herskowitz I (1987) Activation of the yeast HO gene by release from multiple negative controls. Cell 48:567–577CrossRefPubMedGoogle Scholar
  49. Strich R, Slater MR, Esposito RE (1989) Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc Natl Acad Sci USA 86:10018–10022CrossRefPubMedGoogle Scholar
  50. Takahata S, Yu Y, Stillman DJ (2009) The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 28:3378–3389CrossRefPubMedGoogle Scholar
  51. Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821–831CrossRefPubMedGoogle Scholar
  52. Vannier D, Balderes D, Shore D (1996) Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics 144:1343–1353PubMedGoogle Scholar
  53. Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11:6306–6316PubMedGoogle Scholar
  54. Wagner C, Blank M, Strohmann B, Schüller HJ (1999) Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Yeast 15:843–854CrossRefPubMedGoogle Scholar
  55. Wagner C, Dietz M, Wittmann J, Albrecht A, Schüller HJ (2001) The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol Microbiol 41:155–166CrossRefPubMedGoogle Scholar
  56. Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13:1805–1814PubMedGoogle Scholar
  57. Wang H, Clark I, Nicholson PR, Herskowitz I, Stillman DJ (1990) The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol Cell Biol 10:5927–5936PubMedGoogle Scholar
  58. Washburn BK, Esposito RE (2001) Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 21:2057–2069CrossRefPubMedGoogle Scholar
  59. Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14:2737–2744CrossRefPubMedGoogle Scholar
  60. Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A (2008) Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem 283:28958–28968CrossRefPubMedGoogle Scholar
  61. Yoshimoto H, Ohmae M, Yamashita I (1992) The Saccharomyces cerevisiae GAM2/SIN3 protein plays a role in both activation and repression of transcription. Mol Gen Genet 233:327–330CrossRefPubMedGoogle Scholar
  62. Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136:813–817PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yvonne Jäschke
    • 1
  • Juliane Schwarz
    • 1
  • Diana Clausnitzer
    • 1
  • Carina Müller
    • 1
  • Hans-Joachim Schüller
    • 1
  1. 1.Institut für Genetik und Funktionelle GenomforschungGreifswaldGermany

Personalised recommendations