Molecular Genetics and Genomics

, Volume 284, Issue 6, pp 415–424 | Cite as

Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia

  • Shunsuke Masuo
  • Yasunobu Terabayashi
  • Motoyuki Shimizu
  • Tatsuya Fujii
  • Tatsuya Kitazume
  • Naoki Takaya
Original Paper

Abstract

Hypoxia imposes a challenge upon most filamentous fungi that require oxygen for proliferation. Here, we used whole genome DNA microarrays to investigate global transcriptional changes in Aspergillus nidulans gene expression after exposure to hypoxia followed by normoxia. Aeration affected the expression of 2,864 genes (27% of the total number of genes in the fungus), of which 50% were either induced or repressed under hypoxic conditions. Up-regulated genes included those for glycolysis, ethanol production, the tricarboxylic acid (TCA) cycle, and for the γ-aminobutyrate (GABA) shunt that bypasses two steps of the TCA cycle. Ethanol and lactate production under hypoxic conditions indicated that glucose was fermented to these compounds via the glycolytic pathway. Since the GABA shunt bypasses the NADH-generating reaction of the TCA cycle catalyzed by oxoglutarate dehydrogenase, hypoxic A. nidulans cells eliminated excess NADH. Hypoxia down-regulated some genes involved in transcription initiation by RNA polymerase II, and lowered the cellular mRNA content. These functions were resumed by re-oxygenation, indicating that A. nidulans controls global transcription to adapt to a hypoxic environment. This study is the first to show that hypoxia elicits systematic transcriptional responses in A. nidulans.

Keywords

Fungus Fermentation Environmental stress Glutamate dehydrogenase Respiration 

Abbreviations

GABA

γ-Aminobutyrate

GDH

Glutamate dehydrogenase

OGDH

2-Oxoglutarate dehydrogenase

TCA

Tricarboxylic acid

Supplementary material

438_2010_576_MOESM1_ESM.xls (604 kb)
Supplementary material 1 (XLS 604 kb)

References

  1. Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J (2008) A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci USA 105:4387–4392CrossRefPubMedGoogle Scholar
  2. Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K (2003) The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 67:1018–1023CrossRefPubMedGoogle Scholar
  3. Barratt RW, Johnson GB, Ogata WN (1965) Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246PubMedGoogle Scholar
  4. Bonaccorsi ED, Ferreira AJ, Chambergo FS, Ramos AS, Mantovani MC, Farah JP, Sorio CS, Gombert AK, Tonso A, El-Dorry H (2006) Transcriptional response of the obligatory aerobe Trichoderma reesei to hypoxia and transient anoxia: implications for energy production and survival in the absence of oxygen. Biochemistry 45:3912–3924CrossRefPubMedGoogle Scholar
  5. Brun I, Sentenac A, Werner M (1997) Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J 16:5730–5741CrossRefPubMedGoogle Scholar
  6. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885PubMedGoogle Scholar
  7. Chun CD, Liu OW, Madhani HD (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog 3:e22CrossRefPubMedGoogle Scholar
  8. Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MA, de Groot MJ, Slijper M, Heck AJ, Daran JM, de Winde JH, Westerhoff HV, Pronk JT, Bakker BM (2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci USA 104:15753–15758CrossRefPubMedGoogle Scholar
  9. David PS, Poyton RO (2005) Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain: implications for hypoxic gene induction. Biochim Biophys Acta 1709:169–180CrossRefPubMedGoogle Scholar
  10. David H, Ozçelik IS, Hofmann G, Nielsen J (2008) Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 9:163CrossRefPubMedGoogle Scholar
  11. Di Pierro D, Tavazzi B, Perno CF, Bartolini M, Balestra E, Caliò R, Giardina B, Lazzarino G (1997) An ion-pairing high-performance liquid chromatographic method for the direct simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides, and bases in perchloric acid cell extracts. Anal Biochem 231:407–412CrossRefGoogle Scholar
  12. Diano A, Peeters J, Dynesen J, Nielsen J (2009) Physiology of Aspergillus niger in oxygen-limited continuous cultures: influence of aeration, carbon source concentration and dilution rate. Biotechnol Bioeng 103:956–965CrossRefPubMedGoogle Scholar
  13. Eschenlauer JB, Kaiser MW, Gerlach VL, Brow DA (1993) Architecture of a yeast U6 RNA gene promoter. Mol Cell Biol 13:3015–3026PubMedGoogle Scholar
  14. Flipphi M, Sun J, Robellet X, Karaffa L, Fekete E, Zeng AP, Kubiecek CP (2009) Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. Fungal Genet Biol 46:19–44CrossRefGoogle Scholar
  15. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391CrossRefPubMedGoogle Scholar
  16. Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62:465–503PubMedGoogle Scholar
  17. Hawkins AR, Gurr SJ, Montague P, Kinghorn JR (1989) Nucleotide sequence and regulation of expression of the Aspergillus nidulans gdhA gene encoding NADP dependent glutamate dehydrogenase. Mol Gen Genet 218:105–111CrossRefPubMedGoogle Scholar
  18. Herrero J, Valencia A, Dopazo J (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126–136CrossRefPubMedGoogle Scholar
  19. Hynes MJ, Szewczyk E, Murray SL, Suzuki Y, Davis MA, Sealy-Lewis HM (2007) Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176:139–150CrossRefPubMedGoogle Scholar
  20. James P, Whelen S, Hall BD (1991) The RET1 gene of yeast encodes the second-largest subunit of RNA polymerase III. Structural analysis of the wild-type and ret1–1 mutant alleles. J Biol Chem 266:5616–5624PubMedGoogle Scholar
  21. Kelly JM, Drysdale MR, Sealy-Lewis HM, Jones IG, Lockington RA (1990) Alcohol dehydrogenase III in Aspergillus nidulans is anaerobically induced and post-transcriptionally regulated. Mol Gen Genet 222:323–328CrossRefPubMedGoogle Scholar
  22. Kwast KE, Lai LC, Menda N, James DT 3rd, Aref S, Burke PV (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184:250–265CrossRefPubMedGoogle Scholar
  23. Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751CrossRefPubMedGoogle Scholar
  24. Mann C, Buhler JM, Treich I, Sentenac A (1987) RPC40, a unique gene for a subunit shared between yeast RNA polymerases A and C. Cell 48:627–637CrossRefPubMedGoogle Scholar
  25. Panagiotou G, Villas-Bôas SG, Christakopoulos P, Nielsen J, Olsson L (2005a) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115:425–434CrossRefPubMedGoogle Scholar
  26. Panagiotou G, Christakopoulos P, Olsson L (2005b) The influence of different cultivation conditions on the metabolome of Fusarium oxysporum. J Biotechnol 118:304–315CrossRefPubMedGoogle Scholar
  27. Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol 361:399–411CrossRefPubMedGoogle Scholar
  28. Shimizu S, Eguchi Y, Kamiike W, Waguri S, Uchiyama Y, Matsuda H, Tsujimoto Y (1996) Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12:2045–2050PubMedGoogle Scholar
  29. Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N (2009) Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomic 9:7–19CrossRefGoogle Scholar
  30. Shimizu M, Fujii T, Masuo S, Takaya N (2010) Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 76:1507–1515CrossRefPubMedGoogle Scholar
  31. Takasaki K, Shoun H, Yamaguchi M, Takeo K, Nakamura A, Hoshino T, Takaya N (2004) Fungal ammonia fermentation-A novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. J Biol Chem 279:12414–12420CrossRefPubMedGoogle Scholar
  32. van der Werf MJ, Pieterse B, van Luijk N, Schuren F, der Vat B, Overkamp K, Jellema RH (2006) Multivariate analysis of microarray data by principal component discriminant analysis: prioritizing relevant transcripts linked to the degradation of different carbohydrates in Pseudomonas putida S12. Microbiology 152:257–272CrossRefPubMedGoogle Scholar
  33. Zhou Z, Takaya N, Sakairi MA, Shoun H (2001) Oxygen requirement for denitrification by the fungus Fusarium oxysporum. Arch Microbiol 175:19–25Google Scholar
  34. Zhou Z, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277:1892–1896Google Scholar
  35. Zitomer RS, Lowry CV (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56:1–11PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shunsuke Masuo
    • 1
  • Yasunobu Terabayashi
    • 1
  • Motoyuki Shimizu
    • 1
  • Tatsuya Fujii
    • 1
  • Tatsuya Kitazume
    • 1
  • Naoki Takaya
    • 1
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations