Molecular Genetics and Genomics

, Volume 284, Issue 4, pp 273–287 | Cite as

Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes

  • Viktor Stéger
  • Andrea Molnár
  • Adrienn Borsy
  • István Gyurján
  • Zoltán Szabolcsi
  • Gábor Dancs
  • János Molnár
  • Péter Papp
  • János Nagy
  • László Puskás
  • Endre Barta
  • Zoltán Zomborszky
  • Péter Horn
  • János Podani
  • Szabolcs Semsey
  • Péter Lakatos
  • László Orosz
Original Paper


Antlers of deer display the fastest and most robust bone development in the animal kingdom. Deposition of the minerals in the cartilage preceding ossification is a specific feature of the developing antler. We have cloned 28 genes which are upregulated in the cartilaginous section (called mineralized cartilage) of the developing (“velvet”) antler of red deer stags, compared to their levels in the fetal cartilage. Fifteen of these genes were further characterized by their expression pattern along the tissue zones (i.e., antler mesenchyme, precartilage, cartilage, bone), and by in situ hybridization of the gene activities at the cellular level. Expression dynamics of genes col1A1, col1A2, col3A1, ibsp, mgp, sparc, runx2, and osteocalcin were monitored and compared in the ossified part of the velvet antler and in the skeleton (in ribs and vertebrae). Expression levels of these genes in the ossified part of the velvet antler exceeded the skeletal levels 10–30-fold or more. Gene expression and comparative sequence analyses of cDNAs and the cognate 5′ cis-regulatory regions in deer, cattle, and human suggested that the genes runx2 and osx have a master regulatory role. GC–MS metabolite analyses of glucose, phosphate, ethanolamine-phosphate, and hydroxyproline utilizations confirmed the high activity of mineralization genes in governing the flow of the minerals from the skeleton to the antler bone. Gene expression patterns and quantitative metabolite data for the robust bone development in the antler are discussed in an integrated manner. We also discuss the potential implication of our findings on the deer genes in human osteoporosis research.


Antler cycle Antler microarray Physiological osteoporosis Mineralization genes Red deer Osteocalcin Runx2 Osx 



Antler growth center


Bone mineral density


Bone morphogenetic protein


Human ortholog of osteocalcin


Calcitonin gene-related peptide


Collagen alpha-1(I) chain


Canonical variates analysis/discriminant analysis


Extracellular matrix


Fibroblast growth factor 2


Gas chromatography–mass spectrometry


Osteocalcin, human ortholog BGLAP




Phosphate-buffered saline


Principal components analysis


Non-osteoporotic patients


Patients affected with age-related osteoporosis


Parathyroid hormone


Parathyroid hormone-related protein


Runt-related transcription factor 2


Transforming growth factor


Transforming growth factor beta



The authors are indebted to Magdolna Tóth Péli, Csilla Sánta Török, Kornélia Szóráth Gálné for excellent technical assistance, to MSc students András Berta and Attila Hegedűs (ELTE, Budapest) for enthusiastic help. Thanks are due to Péter Orosz and Natalia Polgár for critical reading of the manuscript, and to Sankar Adhya (NIH, Bethesda), László Sugár (U. Kaposvár), Ernő Duda (BRC, Szeged) and János Szabad (U. Szeged), Sándor Spisák, Bernadett Balla and János Kósa (SOTE, Budapest) for their constant interest. This work was supported by grants OTKA T032205 to L.O., OM 0320/2004 to L.O., NKFP 1A/007/2004 to L.O. and P.L., 454/2003 and 006/2009 from the Ministry of Health, Social and Family Affairs, ETT-ESKI to L.O., OTKA PD75496 to S.S., and by the János Bolyai fellowship of the HAS to S.S.

Supplementary material

438_2010_565_MOESM1_ESM.tif (692 kb)
ESM Fig. S1 (A) Antlerogenesis cycle of red deer stag, Cervus elaphus , (B) Bone structure at three time of the antler cycle : cross sections of flying ribs (left), corresponding scanning electron microscopic picture (right) (TIFF 691 kb)
438_2010_565_MOESM2_ESM.tif (328 kb)
ESM Fig. S2 Northern blot analyses of gene expressions. Antler tissues: FC foetal cartilage , RM reserve mesenchyme, PC precartilage , C cartilage , AB antler bone; Skeletal bones : VB vertebral bone , RB rib bone, ibsp* example for longer exposition. Note the robust expressions in AB versus VB and RB and the cartilage specific expression of col2A1. Stag 1 was in velvet antler development and skeletal osteoporosis status; Stag 2, in the period of late autumn dwell status when mineral mobilization and deposition are dynamically equilibrated – BMD is in steady state. Stag 3, in the velvet shedding, skeletal regenerating status. (For more information see Materials and Methods, ESM Fig. S1 and Borsy et al. 2009) (TIFF 327 kb)
438_2010_565_MOESM3_ESM.tif (418 kb)
ESM Fig. S3In situ hybridization of gene expressions for col3A1 and col10A1 (mRNA-s) in velvet antler tissues. Analyses of 8 μm thick longitudinal sections (RM) from mesenchymal region, (PC) from precartilage, (C) from cartilage. Note the very specific expression of col10A1 in hiperthrophic cartilage cells and the prominent expression of col3A1 in the mesenchyme and cartilage cells. Bars: 0.25 mm and 0.1 mm in the corners lower left (the higher magnifications). (TIFF 418 kb)
438_2010_565_MOESM4_ESM.doc (118 kb)
ESM Fig. S4 The DNA sequences for the 1 Kb promoter regions and the 1st exons plus 1245 intronic region of orthologs col1A1 genes of human, bovine and deer with Runx2 binding sites underlined. (DOC 117 kb)
438_2010_565_MOESM5_ESM.doc (104 kb)
ESM Fig. S5 The DNA sequences for the 1 Kb promoter regions and the 1st exons plus 1245 intronic region of orthologs col1A1 genes of human, bovine and deer with Osterix binding sites underlined. (DOC 104 kb)
438_2010_565_MOESM6_ESM.doc (34 kb)
Supplementary material 6 (DOC 35 kb)


  1. Alvarez L, Oriola J, Jo J, Ferró T, Pons F, Peris P, Guañabens N, Durán M, Monegal A, Martínez de Osaba MJ, Rivera-Fillat F, Ballesta AM (1999) Collagen type I alpha1 gene Sp1 polymorphism in premenopausal women with primary osteoporosis: improved detection of Sp1 binding site polymorphism in the collagen type 1 gene. Clin Chem 45(6 Pt 1):904–906PubMedGoogle Scholar
  2. Balla B, Kósa JP, Kiss J, Borsy A, Podani J, Takács I, Lazáry Á, Nagy Zs, Bácsi K, Speer G, Orosz L, Lakatos P (2007) Different gene expression patterns in the bone tissue of aging postmenopausal osteoporotic women. Calcif Tissue Int 82(1):12–26CrossRefPubMedGoogle Scholar
  3. Banks WJ, Newbray JW (1981a) Antler development as a unique modification of mammalian endochondral ossification, Fig. 6. Antler development of Cervidae (part II, Ed. Brown RD) Texas A I University Kingsvile, Texas 78363:285Google Scholar
  4. Banks WJ, Newbrey JW (1981b) Antler development as a unique modification of mammalian endochondral ossification, Fig. 12. Antler development of Cervidae (part II, Ed. Brown RD) Texas A I University Kingsvile, Texas 78363:285Google Scholar
  5. Banks WJ, Newbrey JW (1983) Light microscopic studies of the ossification process in developing antlers. In: Brown RD (ed) Antler development in Cervidae. Caesar Kleburg Wildlife Research Institute, Kingsville, pp 231–260Google Scholar
  6. Banks W, Epling J, Kainer R, Davis R (1968a) Antler growth and osteoporosis, I. Morphological and morphometric changes in the costal compacta during the antler growth cycle. Anat Rec 162:387–398CrossRefPubMedGoogle Scholar
  7. Banks W, Epling J, Kainer R, Davis R (1968b) Antler growth and osteoporosis, II. Gravimetric and chemical changes in the antler growth cycle. Anat Rec 162:399–406CrossRefPubMedGoogle Scholar
  8. Barta E, Sebestyén E, Pálfy TB, Tóth G, Ortutay CP, Patthy L (2005) DoOP: Databases of Orthologous Promoters, collections of clusters of orthologous upstream sequences from chordates and plants. Nucleic Acids Res 33(Database issue):D86–D90CrossRefPubMedGoogle Scholar
  9. Borsy A, Podani J, Stéger V, Balla B, Horváth A, Kósa JP, Gyurján I Jr, Molnár A, Szabolcsi Z, Szabó L, Jakó E, Zomborszky Z, Nagy J, Semsey S, Vellai T, Lakatos P, Orosz L (2009) Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol Genet Genomics 281:301–313Google Scholar
  10. Bubenik GA (1990) The role of the nervous system in the growth of antlers. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns and antlers. Springer, Hamburg, pp 339–358Google Scholar
  11. Chapman D, Larkmead, Mills B, Bury S (1975) Antler-bone of contention. Mammal Rev 5:No. 4Google Scholar
  12. Faucheux C, Price JS (1999): Parathyroid hormone-related peptide may play a role in deer antler regeneration. In: Danks J, Dacke C Flik G, Gay C (ed): Calcium metabolism: comparative endocrinology. BioScientifica Ltd, Bristol. pp 131–138Google Scholar
  13. Faucheux C, Horton MA, Price JS (2002) Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-kappaB-dependent effects on osteoclast formation in regenerating mammalian bone. J Bone Miner Res 17:455–464CrossRefPubMedGoogle Scholar
  14. Feng JQ, Chen D, Esparza J, Harris MA, Mundy GR, Harris SE (1995) Deer antler tissue contains two types of bone morphogenetic protein 4 mRNA transcripts. Biochim Biophys Acta 1263:163–168PubMedGoogle Scholar
  15. Feng JQ, Chen D, Ghosh-Choudhury N, Esparza J, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 transcripts in rapidly developing deer antler tissue contain an extended 5′ non-coding region arising from a distal promoter. Biochim Biophys Acta 1350:47–52PubMedGoogle Scholar
  16. Francis SM, Suttie JM (1998) Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J Exp Zool 281:36–42CrossRefPubMedGoogle Scholar
  17. Galamb O, Spisák S, Sipos F, Tóth K, Solymosi N, Wichmann B, Krenács T, Valcz G, Tulassay Z, Molnár B (2010) Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J Cancer 102(4):765–773CrossRefPubMedGoogle Scholar
  18. Gray C, Hukkanen M, Konttinen YT, Terenghi G, Arnett TR et al (1992) Rapid neural growth: calcitonin gene-related peptide and substance P-containing nerves attain exceptional growth rates in regenerating deer antler. Neuroscience 50:953–963CrossRefPubMedGoogle Scholar
  19. Gyurján J-I, Molnár A, Borsy A, Stéger V, Hackler J-L, Zomborszky Z, Papp P, Duda E, Deák F, Lakatos P, Puskás LG, Orosz L (2007) Gene expression dynamics in deer antler: mesenchymal differentiation toward chondrogenesis. Mol Genet Genomics 277:221–235CrossRefPubMedGoogle Scholar
  20. Hock J, Centrella M, Canalis E (1988) Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 122:254–260CrossRefPubMedGoogle Scholar
  21. Jin H, van’t Hof R, Albagha O, Ralston S (2009) Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 18(15):2729–2738CrossRefPubMedGoogle Scholar
  22. Kohen MM Jr (2009) Perspectives on RUNX genes: an update. Am J Med Genet A 149A(12):2629–2646CrossRefGoogle Scholar
  23. Komori T (2010) Regulation of bone development, extracellular matrix protein genes by RUNX2. Cell Tissue Res 9(1):189–195CrossRefGoogle Scholar
  24. Korpos É, Molnár A, Papp P, Kiss I, Orosz L, Deák F (2005) Expression pattern of matrilins and other extracellular matrix proteins characterize distinct stages of cell differentiation during antler development. Matrix Biol 24:124–135CrossRefPubMedGoogle Scholar
  25. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469CrossRefPubMedGoogle Scholar
  26. Li C, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol 204:375–388CrossRefPubMedGoogle Scholar
  27. Li C, Clark DE, Lord EA, Stanton J, Suttie JM (2002) Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 268:125–130CrossRefPubMedGoogle Scholar
  28. Moen R, Pastor J (1996) Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou. Rangifer, Special Issue 10:85–98Google Scholar
  29. Moen R, Pastor J, Cohen Y (1999) Antler growth and extinction of Irish elk. Evol Ecol Res 1:235–249Google Scholar
  30. Molnar A, Gyurjan I, Korpos E, Borsy A, Steger V, Buzas Z, Kiss I, Zomborszky Z, Papp P, Deak F, Orosz L (2007) Identification of differentially expressed genes in the developing antler of red deer Cervus elaphus. Mol Genet Genomics 277:237–248CrossRefPubMedGoogle Scholar
  31. Mundy G, Gutierrez G, Gallwitz W et al (2001) Antler-derived bone growth factors and their potential for use in osteoporosis. In: Sim JS, Sunwoo HH, Hudson RJ, Jeon BT (eds) Antler science and product technology. Antler Science and Production Technology Research Centre, Canada, pp 171–187Google Scholar
  32. Nakashima K, Zhou X, Kunkel G, Zhang Z, Min D, Behringer R, Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29CrossRefPubMedGoogle Scholar
  33. Nikiforova V, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford M, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138(1):304–318CrossRefPubMedGoogle Scholar
  34. Podani J (2001) SYN-TAX 2000 user’s manual. Scientia Publishing, BudapestGoogle Scholar
  35. Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond 359:809–822CrossRefGoogle Scholar
  36. Price J, Oyajobi O, Nalin M, Frazer A, Russell G, Sandell J (1996) Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev Dyn 205:332–347CrossRefPubMedGoogle Scholar
  37. Price J, Allen S, Faucheux C, Althanaian T, Mount J (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207:603–618CrossRefPubMedGoogle Scholar
  38. Puskás L, Hackler L Jr, Kovács G, Kupihár Z, Zvara A, Micsik T, van Hummelen P (2002) Recovery of cyanine-dye nucleotide triphosphates. Anal Biochem 305(2):279–281CrossRefPubMedGoogle Scholar
  39. Rucklidge GJ, Milne G, Bos KJ, Farquharson C, Robins SP (1997) Deer antler does not represent a typical endochondral growth system: immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comp Biochem Physiol B Biochem Mol Biol 118:303–308CrossRefPubMedGoogle Scholar
  40. Sambrook J, Fritsch EF, Maniatis T (1989) Methods of screening. In: Nolan C (ed) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  41. Siebel M, Eastell R, Gundberg C, Hannon R, Pols H (2002) Biochemical markers of bone metabolism in bk. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology, Academic press, New York, pp 1543–1549Google Scholar
  42. Stein G, Lian J, Montecino M, Wijnen A, Stein J, Javed A, Zaidi K (2002) Involvement of nuclear architecture in regulating gene expression in bone cells in bk. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology, Academic press, New York, pp 177–178Google Scholar
  43. Vignery A, Mcarthy TL (1996) The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone 18:331CrossRefPubMedGoogle Scholar
  44. Villányi Z, Gyurján I, Stéger V, Orosz L (2008) Plaque based competitive hybridization. J Biomol Screen 13:80–84CrossRefPubMedGoogle Scholar
  45. Whyte M (2002) Hypophosphatasia in bk. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic press, New York, pp 1235–1236Google Scholar
  46. Yang C, Wang Z, Zhao H, Yao Y, Chen P (2009) The regulatory effect of calcitonin gene-related peptide on bone metabolism of osteoblast cells co-cultured with breast cancer cells. Tumor 29(9):833–837Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Viktor Stéger
    • 1
    • 2
  • Andrea Molnár
    • 1
    • 2
    • 9
  • Adrienn Borsy
    • 1
    • 2
    • 10
  • István Gyurján
    • 1
    • 2
  • Zoltán Szabolcsi
    • 1
    • 2
  • Gábor Dancs
    • 2
  • János Molnár
    • 6
  • Péter Papp
    • 2
  • János Nagy
    • 3
  • László Puskás
    • 4
  • Endre Barta
    • 2
    • 8
  • Zoltán Zomborszky
    • 3
  • Péter Horn
    • 3
  • János Podani
    • 7
  • Szabolcs Semsey
    • 1
  • Péter Lakatos
    • 5
  • László Orosz
    • 1
    • 2
  1. 1.Department of GeneticsEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of GeneticsAgricultural Biotechnology CenterGödöllőHungary
  3. 3.Department of Fish and Pet Animal Breeding, Faculty of Animal ScienceUniversity of KaposvárKaposvárHungary
  4. 4.Laboratory of Functional Genomics, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  5. 5.1st Department of Internal MedicineSemmelweis UniversityBudapestHungary
  6. 6.BIOMI Ltd.GödöllőHungary
  7. 7.Department of Plant Taxonomy and EcologyEötvös Loránd UniversityBudapestHungary
  8. 8.Apoptosis and Genomics Research Group of the Hungarian Academy of SciencesUniversity of DebrecenDebrecenHungary
  9. 9.Institute of Experimental Medicine of the Hungarian Academy of SciencesBudapestHungary
  10. 10.Institute of BiochemistryBiological Research Center of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations