Molecular Genetics and Genomics

, Volume 284, Issue 2, pp 75–94 | Cite as

Centromere identity: a challenge to be faced

  • Gunjan D. Mehta
  • Meenakshi P. Agarwal
  • Santanu Kumar Ghosh


The centromere is a genetic locus, required for faithful chromosome segregation, where spindle fibers attach to the chromosome through kinetochore. Loss of centromere or formation of multiple centromeres on a single chromosome leads to chromosome missegregation or chromosome breakage, respectively, which are detrimental for fitness and survival of a cell. Therefore, understanding the mechanism of centromere locus determination on the chromosome and perpetuation of such a locus in subsequent generation (known as centromere identity) is very fundamental to combat conditions like aneuploidy, spontaneous abortion, developmental defects, cell lethality and cancer. Recent studies have come up with different models to explain centromere identity. However, the exact mechanism still remains elusive. It has been observed that most eukaryotic centromeres are determined epigenetically rather than by a DNA sequence. The epigenetic marks that are instrumental in determining centromere identity are the histone H3 variant, CENP-A and the specialized posttranslational modification of the core histones. Here we will review the recent studies on the factors responsible for generating unique centromeric chromatin and how it perpetuates during cell division giving the present-day models. We will further focus on the probable mechanism of de novo centromere formation with an example of neocentromere. As a matter of similitude, this review will include marking extrachromosomal chromatin to be served as a partitioning locus by deposition of CENP-A homolog in budding yeast.


Centromere Epigenetics CENP-A Histone modification Chromosome 



Centromeric protein A


Constitutive centromere-associated network


Chromodomain helicase DNA-binding protein 1


Holliday junction recognition protein


Kinetochore null phenotype


Nucleosome remodeling factor


Nuclear autoantigenic sperm protein



We acknowledge Sujata Hajra for a critical reading of the manuscript. We regret not being able to refer to the work of everyone in the field. We are grateful to the reviewers for their insightful critique that helped improve the article’s style and content. G.D.M. and M.P.A. are supported by CSIR fellowships (20-6/2009(i)EU-IV/329667, EU-IV/2008/JUNE/327214, respectively). SKG laboratory is supported by start-up grant from the Indian Institute of Technology, Bombay, India.


  1. Agudo M, Abad JP, Molina I, Losada A, Ripoll P, Villasante A (2000) A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109(3):190–196PubMedCrossRefGoogle Scholar
  2. Aguilera A (2005) mRNA processing and genomic instability. Nat Struct Mol Biol 12:737–738PubMedCrossRefGoogle Scholar
  3. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9(12):923–937PubMedCrossRefGoogle Scholar
  4. Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3(1):6PubMedCrossRefGoogle Scholar
  5. Barry AE, Howman EV, Cancilla MR, Saffery R, Choo KH (1999) Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet 8(2):217–227PubMedCrossRefGoogle Scholar
  6. Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J (2006) Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci USA 103(40):14877–14882PubMedCrossRefGoogle Scholar
  7. Bernad R, Sánchez P, Losada A (2009) Epigenetic specification of centromeres by CENP-A. Exp Cell Res 315(19):3233–3241PubMedCrossRefGoogle Scholar
  8. Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100PubMedCrossRefGoogle Scholar
  9. Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–882PubMedCrossRefGoogle Scholar
  10. Black BE, Brock MA, Bedard S, Woods VL Jr, Cleveland DW (2007a) An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc Natl Acad Sci USA 104(12):5008–5013PubMedCrossRefGoogle Scholar
  11. Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007b) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322PubMedCrossRefGoogle Scholar
  12. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330PubMedCrossRefGoogle Scholar
  13. Blower MD, Daigle T, Kaufman T, Karpen GH (2006) Drosophila CENP-A mutations cause a BubRa dependent early mitotic delay without normal localization of kinetochore components. PLoS Genet 2(7):e110PubMedCrossRefGoogle Scholar
  14. Broach JR, Atkins JF, McGill C, Chow L (1979) Identification and mapping of the transcriptional and translational products of the yeast plasmid, 2 mu circle. Cell 16(4):827–839PubMedCrossRefGoogle Scholar
  15. Buscaino A, Allshire R, Pidoux A (2010) Building centromeres: home sweet home or a nomadic existence? Curr Opin Genet Dev 20(2):118–126PubMedCrossRefGoogle Scholar
  16. Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S et al (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794–805PubMedCrossRefGoogle Scholar
  17. Carroll CW, Straight AF (2006) Centromere formation: from epigenetic to self-assembly. Trends in Cell Biol 16(2):70–77CrossRefGoogle Scholar
  18. Carroll CW, Silva MCC, Godek KM, Jansen LET, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11:896–902PubMedCrossRefGoogle Scholar
  19. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46PubMedCrossRefGoogle Scholar
  20. Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M (2000) The N terminus of the centromere H3 like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 20(18):7037–7048PubMedCrossRefGoogle Scholar
  21. Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KH, Wong LH (2009) LINE retrotransposone RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5(1):e1000354PubMedCrossRefGoogle Scholar
  22. Collins KA, Furuyama S, Biggins S (2004) Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14(21):1968–1972PubMedCrossRefGoogle Scholar
  23. Cui H, Ghosh SK, Jayaram M (2009) The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation. J Cell Biol 185(2):251–264PubMedCrossRefGoogle Scholar
  24. Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 11:741–750PubMedCrossRefGoogle Scholar
  25. Dalal Y (2009) Epigenetic specification of centromeres. Biochem Cell Biol 87:273–282PubMedCrossRefGoogle Scholar
  26. Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol Aug 5(8):e218CrossRefGoogle Scholar
  27. Depinet TW, Zackowski JL, Earnshaw WC, Kaffe S, Sekhon GS et al (1997) Characterization of neo-centromeres in marker chromosomes lacking detactable alpha-satellite DNA. Hum Mol Genet 6(8):1195–1204PubMedCrossRefGoogle Scholar
  28. du Sart D, Cancilla MR, Earle E, Mao J, Saffery R et al (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153PubMedCrossRefGoogle Scholar
  29. Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENP-C) is stabilized by single stranded RNA. PLoS Genet 6(2):e1000835PubMedCrossRefGoogle Scholar
  30. Dunleavy EM, Pidoux AL, Monet M, Bonilla C, Richardson W et al (2007) A NASP (N1/N2)-Related protein, Sim3, Binds CENP-A and is required for its deposition at fission yeast centromeres. Mol Cell 28:1029–1044PubMedCrossRefGoogle Scholar
  31. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D et al (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497PubMedCrossRefGoogle Scholar
  32. Earnshaw WC, Migeon BA (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma (Berl) 92:290–296CrossRefGoogle Scholar
  33. Earnshaw WC, Ratrie H, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma (Berl) 98:1–12CrossRefGoogle Scholar
  34. English CM, Maluf NK, Tripet B, Churchill ME, Tyler JK (2005) ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3–H4 heterotetramer on DNA. Biochemistry 44(42):13673–13682PubMedCrossRefGoogle Scholar
  35. English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127(3):495–508PubMedCrossRefGoogle Scholar
  36. Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi Are required to establish CENP-A chromatin at centromeres. Science 319:94–97PubMedCrossRefGoogle Scholar
  37. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome associated complex. Nat Cell Biol 8:458–469PubMedCrossRefGoogle Scholar
  38. Foltz DR, Jansen LET, Bailey AO, Yates JR III, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137:472–484PubMedCrossRefGoogle Scholar
  39. Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12:17–30PubMedCrossRefGoogle Scholar
  40. Furuyama S, Biggins S (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104:14706–14711PubMedCrossRefGoogle Scholar
  41. Furuyama T, Henikoff S (2009) Centromeric nucleosomes induces positive DNA supercoils. Cell 138(1):104–113PubMedCrossRefGoogle Scholar
  42. Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA 103:6172–6177PubMedCrossRefGoogle Scholar
  43. Gartenberg M (2009) Heterochromatin and the cohesion of sister chromatids. Chromosome Res 17(2):229–238PubMedCrossRefGoogle Scholar
  44. Ghosh SK, Hajra S, Paek A, Jayaram M (2006) Mechanisms for chromosome and plasmid segregation. Ann Rev Biochem 75:211–241PubMedCrossRefGoogle Scholar
  45. Ghosh SK, Hajra S, Jayaram M (2007) Faithful segregation of the multicopy yeast plasmid through cohesin mediated recognition of sisters. Proc Natl Acad Sci USA 104(32):13034–13039PubMedCrossRefGoogle Scholar
  46. Ghosh SK, Huang CC, Hajra S, Jayaram M (2010) Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res 38(2):570–584PubMedCrossRefGoogle Scholar
  47. Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ (2007) H2A.Z contributes to the unique 3D structure of the centromere. Proc Natl Acad Sci USA 104(2):525–530PubMedCrossRefGoogle Scholar
  48. Greiner M, Caesar S, Schlenstedt G (2004) The histones H2A/H2B and H3/H4 are imported into yeast nucleus by different mechanisms. Eur J Cell Biol 83(10):511–520PubMedCrossRefGoogle Scholar
  49. Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G (2007) Regulation of replication fork progression through histone supply and demand. Science 318(5858):1928–1931PubMedCrossRefGoogle Scholar
  50. Grünweller A, Ehrenhofer-Murray AE (2002) A novel yeast silencer. the 2mu origin of Saccharomyces cerevisiae has HST3-, MIG1- and SIR-dependent silencing activity. Genetics 162(1):59–71PubMedGoogle Scholar
  51. Hajra S, Ghosh SK, Jayaram M (2006) The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-microm circle partitioning locus and promotes equal plasmid segregation. J Cell Biol 174(6):779–790PubMedCrossRefGoogle Scholar
  52. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291PubMedCrossRefGoogle Scholar
  53. Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729PubMedCrossRefGoogle Scholar
  54. Henikoff S, Dalal Y (2005) Centromeric chromatin: what makes it unique? Curr Opin Genet Dev 15:177–184PubMedCrossRefGoogle Scholar
  55. Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315PubMedCrossRefGoogle Scholar
  56. Hori T, Amano M, Suzuki A, Backer CB, Welburn JP et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052PubMedCrossRefGoogle Scholar
  57. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (CENP-A) null mice. Proc Natl Acad Sci USA 97:1148–1153PubMedCrossRefGoogle Scholar
  58. Hsu JM, Huang J, Meluh PB, Laurent BC (2003) The yeast RSC chromatin remodelling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 23(9):3202–3215PubMedCrossRefGoogle Scholar
  59. Huang J, Laurent BC (2004) A role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle 3(8):973–975PubMedGoogle Scholar
  60. Huang J, Hsu JM, Laurent BC (2004) The RSC nucleosome-remodeling complex is required for cohesin’s association with chromosome arms. Mol Cell 13(5):739–750PubMedCrossRefGoogle Scholar
  61. Ishii K (2009) Conservation and divergence of centromere specification in yeast. Curr Opin Microbiol 12(6):616–622PubMedCrossRefGoogle Scholar
  62. Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F et al (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321(5892):1088–1091PubMedCrossRefGoogle Scholar
  63. Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N et al (2006) Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684PubMedCrossRefGoogle Scholar
  64. Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805PubMedCrossRefGoogle Scholar
  65. Jayaram M, Mehta S, Uzri D, Velmurugan S (2004) Segregation of the yeast plasmid: similarities and contrasts with bacterial plasmid partitioning. Plasmid 51:162–178PubMedCrossRefGoogle Scholar
  66. Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8(12):570–575PubMedCrossRefGoogle Scholar
  67. Jin W, Lamb JC, Zhang W, Kolano B, Birchler JA (2008) Histone modifications associated with both A and B chromosomes of maize. Chromosome Res 16:1203–1214PubMedCrossRefGoogle Scholar
  68. Kagansky A, Folco HD, Almeida R, Pidoux AL, Boukaba A et al (2009) Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324(5935):1716–1719PubMedCrossRefGoogle Scholar
  69. Kato T, Sato N, Hayama S, Yamabuki T, Ito T et al (2007) Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67:8544–8553PubMedCrossRefGoogle Scholar
  70. Ketel C, Wang HS, McClellan M, Bouchonville K, Selmecki A et al (2009) Neocentromees form efficiently at multiple possible loci in Candida albicans. PLoS Genet 5(3):e1000400PubMedCrossRefGoogle Scholar
  71. Kline SL, Cheeseman IM, Hori T, Fukagawa T, Desai A (2006) The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J Cell Biol 173:9–17PubMedCrossRefGoogle Scholar
  72. Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785PubMedCrossRefGoogle Scholar
  73. Lechner J, Carbon J (1991) A 240-kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64(4):717–725PubMedCrossRefGoogle Scholar
  74. Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451PubMedCrossRefGoogle Scholar
  75. Liao WT, Song LB, Zhang HZ, Zhang X, Zhang L (2007) Centromere protein-H is a novel prognostic marker for nasopharyngeal carcinoma progression and overall patient survival. Clin Cancer Res 13(2):508–514PubMedCrossRefGoogle Scholar
  76. Liu ST, Rattner JB, Jablonski SA, Yen TJ (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175:41–53PubMedCrossRefGoogle Scholar
  77. Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12:641–653PubMedCrossRefGoogle Scholar
  78. Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176(6):757–763PubMedCrossRefGoogle Scholar
  79. Maggert KA, Karpen GH (2000) Acquisition and metastability of centromere identity and function: sequence analysis of a human neocentromere. Genome Res 10:725–728PubMedCrossRefGoogle Scholar
  80. Maggert KA, Karpen GH (2001) Neocentromere formation occurs by an activation mechanism that requires proximity to a functional centromere. Genetics 158:1615–1628PubMedGoogle Scholar
  81. Malik HS (2006) A hitchhiker’s guide to survival finally makes CENs. J Cell Biol 174(6):747–749PubMedCrossRefGoogle Scholar
  82. Marshall OJ, Choo KH (2009) Neocentromeres come of age. PLoS Genet 5(3):e1000370PubMedCrossRefGoogle Scholar
  83. Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82(2):261–282PubMedCrossRefGoogle Scholar
  84. Masumoto H, Nakano M, Ohzeki J (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12:543–556PubMedCrossRefGoogle Scholar
  85. May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79PubMedCrossRefGoogle Scholar
  86. Mehta S, Yang XM, Chan CS, Dobson MJ, Jayaram M, Velmurugan S (2002) The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? J Cell Biol 158(4):625–637PubMedCrossRefGoogle Scholar
  87. Mellone BG, Allshire RC (2003) Stretching it: putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13(2):191–198PubMedCrossRefGoogle Scholar
  88. Mellone BG, Zhang W, Karpen GH (2009) Frodos found: behold the CENP-A “Ring” bearers. Cell 137:409–412PubMedCrossRefGoogle Scholar
  89. Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94(5):607–613PubMedCrossRefGoogle Scholar
  90. Milks KJ, Moree B, Straight AF (2009) Dissection of CENP-C directed centromere and kinetochore assembly. Mol Biol Cell 20(19):4246–4255PubMedCrossRefGoogle Scholar
  91. Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C (2007) Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153–1164PubMedCrossRefGoogle Scholar
  92. Murphy TD, Karpen GH (1998) Centromeres take flight: α satellite and the quest for the human centromere. Cell 93:317–320PubMedCrossRefGoogle Scholar
  93. Musgrave DR, Sandman KM, Reeve JN (1991) DNA binding by the archaeal histone HMf results in positive supercoiling. Proc Natl Acad Sci USA 88(23):10397–10401PubMedCrossRefGoogle Scholar
  94. Mythreye K, Bloom KS (2003) Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J Cell Biol 160(6):833–843PubMedCrossRefGoogle Scholar
  95. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P et al (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14(4):507–522PubMedCrossRefGoogle Scholar
  96. Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446(7133):338–341PubMedCrossRefGoogle Scholar
  97. Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153(6):1209–1226PubMedCrossRefGoogle Scholar
  98. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX et al (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457PubMedCrossRefGoogle Scholar
  99. Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR et al (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131:1287–1300PubMedCrossRefGoogle Scholar
  100. Okada M, Okawa K, Isobe T, Fukagawa T (2009) CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 20:3986–3995PubMedCrossRefGoogle Scholar
  101. Panzeri L, Landonio L, Stotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4(7):1867–1874PubMedGoogle Scholar
  102. Papacs LA, Sun Y, Anderson EL, Sun J, Holmes SG (2004) REP3-mediated silencing in Saccharomyces cerevisiae. Genetics 166(1):79–87PubMedCrossRefGoogle Scholar
  103. Pearson CG, Yeh E, Gardner M, Odde D, Salmon ED, Bloom K (2004) Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr Biol 14:1962–1967PubMedCrossRefGoogle Scholar
  104. Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K (2009) Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 185:397–407PubMedCrossRefGoogle Scholar
  105. Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12(6):521–534PubMedCrossRefGoogle Scholar
  106. Polizzi C, Clarke L (1991) The chromatin structure of centromere formation from fission yeast: differentiation of the central core that correlates with function. J Cell Biol 112(2):191–201PubMedCrossRefGoogle Scholar
  107. Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432(7015):338–341PubMedCrossRefGoogle Scholar
  108. Ray-Gallet D, Quivy JP, Scamps C, Martini EMD, Lipinski M, Almouzni G (2004) HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 9(5):1091–1100CrossRefGoogle Scholar
  109. Régnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E et al (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25(10):3967–3981PubMedCrossRefGoogle Scholar
  110. Reinberg D, Sims RJ 3rd (2006) de FACTo nucleosome dynamics. J Biol Chem 281:23297–23301PubMedCrossRefGoogle Scholar
  111. Rocha W, Verreault A (2008) Clothing up DNA for all seasons: histone chaperones and nucleosome assembly pathways. FEBS Lett 582:1938–1949PubMedCrossRefGoogle Scholar
  112. Rosasco-Nitcher SE, Lan W, Khorasanizadeh S, Stukenberg PT (2008) Centromeric aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science 319:469–472PubMedCrossRefGoogle Scholar
  113. Runge KW, Wellinger RJ, Zakian VA (1991) Effect of excess centromeres and excess telomeres on chromosome loss rates. Mol Cell Biol 11(6):2919–2928PubMedGoogle Scholar
  114. Saffery R, Irvine DV, Griffiths B, Kalitsis P, Wordeman L, Andy Choo KH (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet 9:175–185PubMedCrossRefGoogle Scholar
  115. Saffery R, Sumer H, Hassan S, Wong LH, Craig JM et al (2003) Transcription within a functional human centromere. Mol Cell 12:509–516PubMedCrossRefGoogle Scholar
  116. Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L et al (2009) Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS One 4(8):e6831PubMedCrossRefGoogle Scholar
  117. Sanchez-Pulido L, Pidoux AL, Ponting CP, Allshire RC (2009) Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137(7):1173–1174PubMedCrossRefGoogle Scholar
  118. Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17:237–243PubMedCrossRefGoogle Scholar
  119. Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118PubMedCrossRefGoogle Scholar
  120. Shuaib M, Ouararhni K, Dimitrov S, Hamiche A (2010) HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeresGoogle Scholar
  121. Silva MCC, Jansen LET (2009) At the right place at the right time: novel CENP-A binding proteins shed light on centromere assembly. Chromosoma 118(5):567–574PubMedCrossRefGoogle Scholar
  122. Smith S, Stillman B (1991) Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 10(4):971–980PubMedGoogle Scholar
  123. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from euchromatin and heterochromatin. Nat Struct Mol Biol 11(11):1076–1083PubMedCrossRefGoogle Scholar
  124. Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228PubMedCrossRefGoogle Scholar
  125. Sutton A, Broach JR (1985) Signals for transcription initiation and termination in the Saccharomyces cerevisiae plasmid 2 micron circle. Mol Cell Biol 5(10):2770–2780PubMedGoogle Scholar
  126. Takahashi K, Murakami S, Shikashige Y, Funabiki H, Niwa O, Yanagida M (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3:819–835PubMedGoogle Scholar
  127. Takayama Y, Sato H, Saitoh S, Ogiyama Y, Masuda F, Takahashi K (2008) Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol Biol Cell 19:682–690PubMedCrossRefGoogle Scholar
  128. Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H et al (2003) Overexpression and mistargeting of centromere Protein-A in human primary colorectal cancer. Cancer Res 63:3511–3516PubMedGoogle Scholar
  129. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101(45):15986–15991PubMedCrossRefGoogle Scholar
  130. Torras-Llort M, Moreno-Moreno O, Azorin F (2009) Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 28(16):2337–2348PubMedCrossRefGoogle Scholar
  131. Trazzi S, Perini G, Bernardoni R, Zoli M, Reese JC et al (2009) The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation. PLoS One 4(6):e5832PubMedCrossRefGoogle Scholar
  132. Tyler-Smith C, Gimelli G, Giglio S, Floridia G, Pandya A et al (1999) Transmission of a fully functional human neocentromeres through three generations. Am J Hum Genet 64:1440–1444PubMedCrossRefGoogle Scholar
  133. Vagnarelli P, Ribeiro SA, Earnshaw WC (2008) Centromeres: old tales and new tools. FEBS Lett 582:1950–1959PubMedCrossRefGoogle Scholar
  134. Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ et al (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114(Pt 19):3529–3542PubMedGoogle Scholar
  135. Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 33:2868–2879PubMedCrossRefGoogle Scholar
  136. Wang Ga, Zhang X, Jin W (2009) An overview of plant centromeres. J Genet Genomics 36(9):529–537PubMedCrossRefGoogle Scholar
  137. Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12(6):617–626PubMedCrossRefGoogle Scholar
  138. Williams SK, Tyler JK (2007) Transcriptional regulation by chromatin disassembly and reassembly. Curr Opin Genet Dev 17:88–93PubMedCrossRefGoogle Scholar
  139. Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:30–38PubMedCrossRefGoogle Scholar
  140. Williams JS, Hayashi T, Yanagida M, Russell P (2009) Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol Cell 33(3):287–298PubMedCrossRefGoogle Scholar
  141. Wong MC, Scott-Drew SR, Hayes MJ, Howard PJ, Murray JA (2002) RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 microm plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 22(12):4218–4229PubMedCrossRefGoogle Scholar
  142. Wong NC, Wong LH, Quach JM, Canham P, Craig JM et al (2006) Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLoS Genet 2(2):e17PubMedCrossRefGoogle Scholar
  143. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R et al (2002) The genome sequence of Schizosachharomyces pombe. Nature 415:871–880PubMedCrossRefGoogle Scholar
  144. Yan H, Ito H, Nobuta K, Ouyang S, Jin W et al (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18(9):2123–2133PubMedCrossRefGoogle Scholar
  145. Yang XM, Mehta S, Uzri D, Jayaram M, Velmurugan S (2004) Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation. Mol Cell Biol 24(12):5290–5303PubMedCrossRefGoogle Scholar
  146. Yuen KWY, Montpetit B, Hieter P (2005) The kinetochore and cancer: what’s the connection? Curr Opin Cell Biol 17:576–582PubMedCrossRefGoogle Scholar
  147. Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylatedby Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155(7):1147–1157PubMedCrossRefGoogle Scholar
  148. Zeitlin SG, Baker NM, Chapados BR, Soutoglou E, Wang JYJ, Berns MW, Cleveland DW (2009) Double-strand DNA breaks recruit the centromeric histone CENP-A. PNAS 106(37):15762–15767PubMedCrossRefGoogle Scholar
  149. Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20(1):25–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gunjan D. Mehta
    • 1
  • Meenakshi P. Agarwal
    • 1
  • Santanu Kumar Ghosh
    • 1
  1. 1.Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations