Molecular Genetics and Genomics

, Volume 284, Issue 1, pp 65–73 | Cite as

Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane

  • George Piperidis
  • Nathalie Piperidis
  • Angélique D’Hont
Original Paper

Abstract

Modern sugarcane cultivars (Saccharum spp., 2n = 100–120) are complex polyploids derived from interspecific hybridization performed a century ago between the sugar-producing species S. officinarum L. and the wild species S. spontaneum L. Using genomic in situ hybridization, we revealed that between 15 and 27.5% of the genome of modern cultivars is derived from S. spontaneum, including 10–23% of entire chromosomes from this wild species and 8–13% chromosomes derived from interspecific recombination. We confirmed the occurrence of 2n + n transmission in crosses and first backcrosses between these two species and demonstrated that this also can occur in crosses between S. officinarum and modern cultivars. We analysed five S. officinarum clones with more than 80 chromosomes and demonstrated that they were derived from interspecific hybridization supporting the classical view that this species is characterized by 2n = 80. We also illustrated the complementarities between molecular cytogenetics and genetic mapping approaches for analysing complex genomes.

Key words

Saccharum Polyploid GISH Interspecific hybrid Cytogenetics 2n + n transmission 

Notes

Acknowledgments

The authors are grateful for funding contributions from the following organizations: Australian Sugar Research and Development Corporation; Australian Academy of Science; French Embassy in Canberra; Cooperative Research Centre for Sugar Industry Innovation through Biotechnology; BSES Limited, and CIRAD. We thank J.C. Glaszmann and N. Berding for critical reading of the manuscript.

References

  1. Aitken K, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801CrossRefPubMedGoogle Scholar
  2. Aitken KS, Li J-C, Jackson P, Piperidis G, McIntyre CL (2006) AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Aust J Agric Res 57:1167–1184CrossRefGoogle Scholar
  3. Aitken K, Jackson PA, McIntyre CL (2007) Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50:742–756CrossRefPubMedGoogle Scholar
  4. Berding N, Koike H (1980) Germplasm conservation of the Saccharum complex: a collection from the Indonesian Archipelago. Hawaiian Planters’ Record 59(7):87–176 (Hawaiian Sugar Planters’ Association)Google Scholar
  5. Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 143–210Google Scholar
  6. Bhat SR, Gill SS (1985) The implications of 2n egg gametes in mobilization and breeding of sugarcane. Euphytica 34:377–384CrossRefGoogle Scholar
  7. Brandes EW (1929) Natl. Geo 56:253–332Google Scholar
  8. Brandes E (1956) Origin, dispersal and use in breeding of the Melanesian garen sugarcane and their derivatives, Saccharum officinarum L. Proc Int Soc Sugarcane Technol 9:709–750Google Scholar
  9. Bremer G (1961) Problems in breeding and cytology of sugar cane. Euphytica 10:59–78CrossRefGoogle Scholar
  10. Brummer EC, Cazcarro PM, Luth D (1999) Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop Sci 39:1202–1207Google Scholar
  11. Burner DM (1997) Chromosome transmission and meiotic behaviour in various sugarcane crosses. J Am Soc Sugar Cane Technol 17:38–50Google Scholar
  12. Burner DM, Legendre BL (1993) Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Sci 33:600–606Google Scholar
  13. Cuadrado A, Acevedo R, Díaz Moreno, de la Espina S, Jouve N, de la Torre C (2004) Genome remodeling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854CrossRefPubMedGoogle Scholar
  14. D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33CrossRefPubMedGoogle Scholar
  15. D’Hont A, Rao P, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann J-C (1995) Identification and characterization of intergeneric hybrids, S officinarum × Erianthus arundinaceus, with molecular markers and in situ hybridization. Theor Appl Genet 91:320–326Google Scholar
  16. D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J-C (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413PubMedGoogle Scholar
  17. D’Hont A, Ison D, Alix K, Roux C, Glaszmann J-C (1998) Determination of basic chromosome number in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225CrossRefGoogle Scholar
  18. D’Hont A, Paulet F, Glaszmann J-C (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262CrossRefPubMedGoogle Scholar
  19. Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 7–84Google Scholar
  20. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedGoogle Scholar
  21. Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127CrossRefGoogle Scholar
  22. Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J-C (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid inter-specific hybrid. Genetics 142:987–1000PubMedGoogle Scholar
  23. Grivet L, Glaszmann JC, D’Hont A (2005) Molecular evidences for sugarcane evolution and domestication. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, USAGoogle Scholar
  24. Hoarau J-Y, Offmann B, D’Hont A, Risterucci A-M, Roques D, Glaszmann J-C, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  25. Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194CrossRefGoogle Scholar
  26. Jannoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann J-C (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184CrossRefGoogle Scholar
  27. Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50(4):574–585CrossRefPubMedGoogle Scholar
  28. Kandasami PA, Sreenivasan TV, Ramana Rao TC, Palanichami K, Natarajan BV, Alexander KC, Madhusudana Rao M, Mohan Raj D (1983) Catalogue on sugarcane genetic resources 1. Saccharum spontaneum L. Sugarcane breeding Institute (Indian Council of Agricultural Research), CoimbatoreGoogle Scholar
  29. Le Cunff L, Garsmeur O, Raboin L-M, Pauquet J, Telismart Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann D’Hont A (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ∼ 12x ∼ 115). Genetics 180:649–660CrossRefPubMedGoogle Scholar
  30. Lu YH, D’Hont A, Walker DIT, Rao PS, Feldmann P, Glaszmann J-C (1994) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–18CrossRefGoogle Scholar
  31. Ming R, Liu S-C, Lin Y-R, Da Silva J, Wilson W, Braga D, Van Deynze A (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682PubMedGoogle Scholar
  32. Ming R, Liu S-C, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084CrossRefPubMedGoogle Scholar
  33. Ming R, Wang Y-W, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345CrossRefPubMedGoogle Scholar
  34. Nair MK (1975) Cytogenetics of Saccharum officinarum L., Saccharum spontaneum L. and S. officinarum × S. spontaneum hybrids IV. Chromosome number and meiosis in S. officinarum × S. spontaneum hybrids. Caryologia 28:1–14Google Scholar
  35. Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of inter-generic hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037CrossRefPubMedGoogle Scholar
  36. Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17:97–106Google Scholar
  37. Price S (1965) Interspecific hybridization in sugarcane breeding. Proc Int Soc Sugar Cane Technol 12:1021–1026Google Scholar
  38. Raboin LM, Oliveira KM, Le Cunff L, Telismart H, Roques D, Butterfield MK, Hoarau J-Y, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny : identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112(7):1382–1391CrossRefPubMedGoogle Scholar
  39. Reffay N, Jackson PA, Aitken KA, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breeding 15:367–381CrossRefGoogle Scholar
  40. Roach BT (1969) Cytological studies in Saccharum chromosome transmission in inter-specific and inter-generic crosses. Proc Int Soc Sugar Cane Technol 13:901–920Google Scholar
  41. Rossi M, Araujo P, Paulet F, Garsmeur O, Dias V, Hui C, Van Sluys MA, D′Hont A (2003) Genome distribution and characterization of EST derived sugarcane resistance gene analogs. Mol. Gen. Genome 269:406–419CrossRefGoogle Scholar
  42. Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, pp 211–253Google Scholar
  43. Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735CrossRefPubMedGoogle Scholar
  44. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • George Piperidis
    • 1
  • Nathalie Piperidis
    • 1
    • 2
  • Angélique D’Hont
    • 3
  1. 1.BSES LimitedMackayAustralia
  2. 2.Cooperative Research Centre for Sugar Industry Innovation through BiotechnologyThe University of QueenslandBrisbaneAustralia
  3. 3.CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR1098/DAPMontpellier Cedex 5France

Personalised recommendations