Advertisement

Molecular Genetics and Genomics

, Volume 284, Issue 1, pp 33–43 | Cite as

A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea

  • Yoshimoto Saitoh
  • Kosuke Izumitsu
  • Atsushi Morita
  • Chihiro Tanaka
Original Paper

Abstract

Copper is an essential trace element that serves as a cofactor for numerous enzymes. In eukaryotes, copper-transporting ATPases deliver copper to various copper-containing proteins in the trans-golgi network. This study identified a copper-transporting ATPase gene BcCcc2 in a fungus pathogenic to plants, Botrytis cinerea. We investigated the biological roles of BcCCC2 by generating null mutants for BcCcc2. Melanization, conidiation and the formation of sclerotia were severely affected in ∆BcCcc2 mutants. Moreover, a pathogenicity assay using tomato leaves and carnation petals revealed the mutants to be nonpathogenic. Further analysis indicated that they formed fewer appressoria and infection cushions than the wild-type. These structures were aberrant in morphology and in many cases had a significantly reduced ability to penetrate the plant epidermis. An assay also indicated that ∆BcCcc2 mutants were defective in infection through wounds. BcCCC2 is necessary not only for penetrating a host but also for fungal growth within plant tissues. Our results also imply that B. cinerea requires copper-containing proteins for infection that are inactive in the absence of the copper-transporting ATPase BcCCC2.

Keywords

Botrytis cinerea Copper-transporting ATPase Filamentous fungus Plant pathogenicity 

Notes

Acknowledgments

We thank Drs. Jean-Michel Fustin and Abdul Gafur for critical reading of the manuscript and valuable comments. We also thank two anonymous reviewers for their kind suggestions and comments on the revision of the manuscript.

Supplementary material

438_2010_545_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2450 kb)

References

  1. Askwith C, Eide D, Ho AV, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410CrossRefPubMedGoogle Scholar
  2. Balhadère PV, Talbot NJ (2001) PDE1 encodes a P-Type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 13:1987–2004CrossRefPubMedGoogle Scholar
  3. Borghouts C, Scheckhuber CQ, Stephan O, Osiewacz HD (2002) Copper homeostasis and aging in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter. Int J Biochem Cell Biol 34:1355–1371CrossRefPubMedGoogle Scholar
  4. Carroll AM, Sweigard JA, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22Google Scholar
  5. Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10CrossRefPubMedGoogle Scholar
  6. Coertze S, Holz G, Sadie A (2001) Germination and establishment of Infection on grape berries by single airborne conidia of Botrytis cinerea. Plant Dis 85:668–677CrossRefGoogle Scholar
  7. Culotta VC, Gitlin JD (2001) Disorders of copper transport. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The molecular and metabolic basis of inherited disease 3. McGraw-Hill, New York, pp 3105–3136Google Scholar
  8. Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469CrossRefPubMedGoogle Scholar
  9. Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis spp. and diseases they cause in agricultural systems—an introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 1–8Google Scholar
  10. Francis MJ, Jones EM, Levy ER, Ponnambalam S, Chelly J, Monaco AP (1998) A Golgi localization signal identified in the Menkes recombinant protein. Hum Mol Genet 7:1245–1252CrossRefPubMedGoogle Scholar
  11. Gourgues M, Brunet-Simon A, Lebrun M-H, Levis C (2004) The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629CrossRefPubMedGoogle Scholar
  12. Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330CrossRefPubMedGoogle Scholar
  13. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-to-antagonisti, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393CrossRefPubMedGoogle Scholar
  14. Hissen AHT, Wan ANC, Warwas ML, Pinto LJ, Moore MM (2005) The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding l-ornithine N 5-oxygenase, is required for virulence. Infect Immun 73:5493–5503CrossRefPubMedGoogle Scholar
  15. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326CrossRefPubMedGoogle Scholar
  16. Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Ann Rev Biochem 70:677–701CrossRefPubMedGoogle Scholar
  17. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272:21461–21466CrossRefPubMedGoogle Scholar
  18. Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495CrossRefPubMedGoogle Scholar
  19. Izumitsu K, Yoshimi A, Tanaka C (2007) Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Eukaryot Cell 6:171–181CrossRefPubMedGoogle Scholar
  20. Izumitsu K, Yoshimi A, Kubo D, Morita A, Saitoh Y, Tanaka C (2009) The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus. Curr Genet 55:439–448CrossRefPubMedGoogle Scholar
  21. Kubo Y, Nakamura H, Kobayashi K, Okuno T, Furusawa I (1991) Cloning of a melanin biosynthetic gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant-Microbe Interact 4:440–445Google Scholar
  22. Laliberté J, Labbé S (2006) Mechanisms of copper loading on the Schizosaccharomyces pombe copper amine oxidase 1 expressed in Saccharomyces cerevisiae. Microbiology 152:2819–2830CrossRefPubMedGoogle Scholar
  23. Li R, Klinman JP, Mathews FS (1998) Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 Å resolution reveals the active conformation. Structure 6:293–307CrossRefPubMedGoogle Scholar
  24. Marbach K, Fernández-Larrea J, Stahl U (1994) Reversion of a long-living, undifferentiated mutant of Podospora anserina by copper. Curr Genet 26:184–186CrossRefPubMedGoogle Scholar
  25. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356CrossRefPubMedGoogle Scholar
  26. Nakada M, Tanaka C, Tsunewaki K, Tsuda M (1994) RFLP analysis for species separation in genera Bipolaris and Curvularia. Mycoscience 35:271–278CrossRefGoogle Scholar
  27. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853CrossRefPubMedGoogle Scholar
  28. Parisot D, Dufresne M, Veneault C, Laugé R, Langin T (2002) clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol Genet Genomics 268:139–151CrossRefPubMedGoogle Scholar
  29. Petris MJ, Strausak D, Mercer JFB (2000) The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet 9:2845–2851CrossRefPubMedGoogle Scholar
  30. Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213CrossRefPubMedGoogle Scholar
  31. Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu–Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27CrossRefGoogle Scholar
  32. Saitoh Y, Izumitsu K, Tanaka C (2009) Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus. Mycol Res 113:737–745CrossRefPubMedGoogle Scholar
  33. Saitoh Y, Izumitsu K, Morita A, Shimizu K, Tanaka C (2010) ChMCO1 of Cochliobolus heterostrophus is a new class of metallo-oxidase, playing an important role in DHN-melanization. Mycoscience. doi: 10.1007/s10267-010-0043-x
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  35. Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JAL (2002) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43:883–894CrossRefPubMedGoogle Scholar
  36. Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819CrossRefPubMedGoogle Scholar
  37. Steffens GCM, Biewald R, Buse G (1987) Cytochrome c oxidase is three-copper, two-heme-A protein. Eur J Biochem 164:295–300CrossRefPubMedGoogle Scholar
  38. Talbot NJ (2003) On the trail of cereal killer: exploring the biology of Magnaporthe grisea. Ann Rev Microbiol 57:177–202CrossRefGoogle Scholar
  39. Tamhane AC (2009) Statistical analysis of designed experiments: theory and applications. Wiley, HobokenGoogle Scholar
  40. Tanaka C, Tajima S, Furusawa I, Tsuda M (1992) The pgr1 mutant of Cochliobolus heterostrophus lacks a p-diphenol oxidase involved in naphthalenediol melanin synthesis. Mycol Res 96:959–964CrossRefGoogle Scholar
  41. ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016CrossRefPubMedGoogle Scholar
  42. Tenberge KB, Beckedorf M, Hoppe B, Schouten A, Solf M, von den Driesch M (2002) In situ localization of AOS in host–pathogen interactions. Microsc Microanal 8:250–251Google Scholar
  43. Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16:1575–1588CrossRefPubMedGoogle Scholar
  44. van Kan JAL (2006) Licensed to kill: the life style of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253CrossRefPubMedGoogle Scholar
  45. Wakabayashi T, Nakamura N, Sambongi Y, Wada Y, Oka T, Futai M (1998) Identification of the copper chaperone, CUC-1, in Caenorhabditis elegans: tissue specific coexpression with the copper transporting ATPase, CUA-1. FEBS Lett 440:141–146CrossRefPubMedGoogle Scholar
  46. Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396CrossRefPubMedGoogle Scholar
  47. Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T, Klausner RD (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 92:2632–2636CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yoshimoto Saitoh
    • 1
  • Kosuke Izumitsu
    • 1
  • Atsushi Morita
    • 1
  • Chihiro Tanaka
    • 1
  1. 1.Laboratory of Environmental Mycoscience, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations