Molecular Genetics and Genomics

, Volume 283, Issue 6, pp 575–589 | Cite as

Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant

  • Sonja Klüsener
  • Stephanie Hacker
  • Yun-Long Tsai
  • Julia E. Bandow
  • Ronald Gust
  • Erh-Min Lai
  • Franz Narberhaus
Original Paper


Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, whereas only a limited number of bacteria are able to synthesize PC. Intriguingly, many of the bacteria with PC-containing membranes interact with eukaryotic hosts. PC is one of the major membrane lipids in the phytopathogenic bacterium Agrobacterium tumefaciens. The presence of PC is critical for diverse cellular processes like motility, biofilm formation, stress resistance, and virulence. The exact role of PC in these processes is unknown. Here, we examined the global consequences of the complete loss of PC at the proteomic and transcriptomic levels. Both strategies validated the impaired virulence gene induction responsible for the virulence defect of the PC-deficient mutant. In addition, the proteomic approach revealed a limited subset of proteins with altered abundance including the reduced flagellar proteins FlaA and FlaB, which explains the motility defect of the PC mutant. At the whole-genome level, the loss of PC was correlated with altered expression of up to 13% of all genes, most encoding membrane or membrane-associated proteins and proteins with functions in the extracytoplasmic stress response. Our integrated analysis revealed that A. tumefaciens dynamically remodels its membrane protein composition in order to sustain normal growth in the absence of PC.


Membrane lipids Phosphatidylcholine α-Proteobacterium Agrobacterium Plant–microbe interaction 



We are grateful to Knut Büttner (Greifswald) for MALDI-MS analyses, Hauke Hennecke and co-workers (Zürich) for providing access to the GeneSpring gene expression analysis software, Birgit Scharf (Blacksburg, Virginia) for antiflagella sera, and Christian Baron (Montreal) for VirB9 antisera. We thank Yi-Chun Chen (Taipei) for constructing pAC01-virBp and pAC01-tzsp, Meriyem Aktas and Sina Langklotz for helpful comments on this manuscript, and Christiane Fritz for technical assistance. The work was in part supported by a grant the German Research Foundation (DFG NA 240/7) to FN, a grant from Taiwan National Science Council (NSC 95-2320-B-001-009) to EML and a joint grant from the German Academic Exchange Service (DAAD) and the Taiwan National Science Council (PPP grant no. 0970029248P) to FN and EML.

Supplementary material

438_2010_542_MOESM1_ESM.pdf (179 kb)
Supplementary material 1 (PDF 178 kb)


  1. Aktas M, Narberhaus F (2009) In vitro characterization of the enzyme properties of the phospholipid N-methyltransferase PmtA from Agrobacterium tumefaciens. J Bacteriol 191:2033–2041CrossRefPubMedGoogle Scholar
  2. Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715CrossRefPubMedGoogle Scholar
  3. Arondel V, Benning C, Somerville CR (1993) Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC from Rhodobacter sphaeroides. J Biol Chem 268:16002–16008PubMedGoogle Scholar
  4. Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839CrossRefPubMedGoogle Scholar
  5. Bandow JE, Baker JD, Berth M, Painter C, Sepulveda OJ, Clark KA, Kilty I, VanBogelen RA (2008) Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies—COPD biomarker discovery study. Proteomics 8:3030–3041CrossRefPubMedGoogle Scholar
  6. Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861CrossRefPubMedGoogle Scholar
  7. Braun V (1997) Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch Microbiol 167:325–331CrossRefPubMedGoogle Scholar
  8. Canty DJ, Zeisel SH (1994) Lecithin and choline in human health and disease. Nutr Rev 52:327–339PubMedCrossRefGoogle Scholar
  9. Charles TC, Nester EW (1993) A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175:6614–6625PubMedGoogle Scholar
  10. Chesnokova O, Coutinho JB, Khan IH, Mikhail MS, Kado CI (1997) Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol 23:579–590CrossRefPubMedGoogle Scholar
  11. Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102:14843–14848CrossRefPubMedGoogle Scholar
  12. Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 22:51–61CrossRefPubMedGoogle Scholar
  13. Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188:1929–1934CrossRefPubMedGoogle Scholar
  14. Conde-Alvarez R, Grilló MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyón I, Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335CrossRefPubMedGoogle Scholar
  15. Conover GM, Martínez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528PubMedGoogle Scholar
  16. de Kroon AI (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 1771:343–352PubMedGoogle Scholar
  17. de Rudder KE, Thomas-Oates JE, Geiger O (1997) Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J Bacteriol 179:6921–6928PubMedGoogle Scholar
  18. de Rudder KE, Sohlenkamp C, Geiger O (1999) Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274:20011–20016CrossRefPubMedGoogle Scholar
  19. de Rudder KE, López-Lara IM, Geiger O (2000) Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37:763–772CrossRefPubMedGoogle Scholar
  20. Deakin WJ, Parker VE, Wright EL, Ashcroft KJ, Loake GJ, Shaw CH (1999) Agrobacterium tumefaciens possesses a fourth flagelin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology 145:1397–1407CrossRefPubMedGoogle Scholar
  21. Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185:760–771CrossRefPubMedGoogle Scholar
  22. Goodner B, Hinkle G, Gattung S et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328CrossRefPubMedGoogle Scholar
  23. Gust R, Schnurr B, Krauser R, Bernhardt G, Koch M, Schmid B, Hummel E, Schönenberger H (1998) Stability and cellular studies of [rac-1,2-bis(4-fluorophenyl)-ethylenediamine][cyclobutane-1,1-dicarboxylato]platinum(II), a novel, highly active carboplatin derivative. J Cancer Res Clin Oncol 124:585–597CrossRefPubMedGoogle Scholar
  24. Hacker S, Gödeke J, Lindemann A, Mesa S, Pessi G, Narberhaus F (2008a) Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum. Mol Genet Genomics 280:59–72CrossRefPubMedGoogle Scholar
  25. Hacker S, Sohlenkamp C, Aktas M, Geiger O, Narberhaus F (2008b) Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 190:571–580CrossRefPubMedGoogle Scholar
  26. Hanada T, Kashima Y, Kosugi A, Koizumi Y, Yanagida F, Udaka S (2001) A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant. Biosci Biotechnol Biochem 65:2741–2748CrossRefPubMedGoogle Scholar
  27. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  28. Hindahl MS, Iglewski BH (1984) Isolation and characterization of the Legionella pneumophila outer membrane. J Bacteriol 159:107–113PubMedGoogle Scholar
  29. Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642CrossRefPubMedGoogle Scholar
  30. Kaneshiro T, Law JH (1964) Phosphatidylcholine synthesis in Agrobacterium tumefaciens. I. Purification and properties of a phosphatidylethanolamine N-methyltransferase. J Biol Chem 239:1705–1713PubMedGoogle Scholar
  31. Kent C, Gee P, Lee SY, Bian X, Fenno JC (2004) A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Mol Microbiol 51:471–481CrossRefPubMedGoogle Scholar
  32. Klüsener S, Aktas M, Thormann KM, Wessel M, Narberhaus F (2009) Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes. J Bacteriol 191:365–374CrossRefPubMedGoogle Scholar
  33. Lai EM, Chesnokova O, Banta LM, Kado CI (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182:3705–3716CrossRefPubMedGoogle Scholar
  34. Lai EM, Shih HW, Wen SR, Cheng MW, Hwang HH, Chiu SH (2006) Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6:4130–4136CrossRefPubMedGoogle Scholar
  35. Lamanda A, Zahn A, Roder D, Langen H (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics 4:599–608CrossRefPubMedGoogle Scholar
  36. Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99:12369–12374CrossRefPubMedGoogle Scholar
  37. Liu AC, Shih HW, Hsu T, Lai EM (2008) A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens. J Appl Microbiol 105:1372–1383CrossRefPubMedGoogle Scholar
  38. Mantis NJ, Winans SC (1993) The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 175:6626–6636PubMedGoogle Scholar
  39. Martínez-Morales F, Schobert M, López-Lara IM, Geiger O (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149:3461–3471CrossRefPubMedGoogle Scholar
  40. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  41. Minder AC, de Rudder KE, Narberhaus F, Fischer HM, Hennecke H, Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39:1186–1198CrossRefPubMedGoogle Scholar
  42. Ngok-Ngam P, Ruangkiattikul N, Mahavihakanont A, Virgem SS, Sukchawalit R, Mongkolsuk S (2009) Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol 191:2083–2090CrossRefPubMedGoogle Scholar
  43. Ott I, Schmidt K, Kircher B, Schumacher P, Wiglenda T, Gust R (2005) Antitumor-active cobalt-alkyne complexes derived from acetylsalicylic acid: studies on the mode of drug action. J Med Chem 48:622–629CrossRefPubMedGoogle Scholar
  44. Ott I, Schäffler H, Gust R (2007) Development of a method for the quantification of the molar gold concentration in tumour cells exposed to gold containing drugs. ChemMedChem 2:702–707CrossRefPubMedGoogle Scholar
  45. Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866CrossRefPubMedGoogle Scholar
  46. Salzberg LI, Helmann JD (2008) Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 190:7797–7807CrossRefPubMedGoogle Scholar
  47. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  48. Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953CrossRefPubMedGoogle Scholar
  49. Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski PC, Baron C (1999) Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181:7485–7492PubMedGoogle Scholar
  50. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefPubMedGoogle Scholar
  51. Sohlenkamp C, de Rudder KE, Röhrs VV, López-Lara IM, Geiger O (2000) Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 275:18919–18925CrossRefPubMedGoogle Scholar
  52. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162CrossRefPubMedGoogle Scholar
  53. Tahara Y, Yamashita T, Sogabe A, Ogawa Y (1994) Isolation and characterization of Zymomonas mobilis mutant defective in phosphatidylethanolamine N-methyltransferase. J Gen Appl Microbiol 40:389–396CrossRefGoogle Scholar
  54. Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F (2006) Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62:906–915CrossRefPubMedGoogle Scholar
  55. Wilderman PJ, Vasil AI, Martin WE, Murphy RC, Vasil ML (2002) Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 184:4792–4799CrossRefPubMedGoogle Scholar
  56. Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438PubMedGoogle Scholar
  57. Winans SC (1992) Two-way chemical signaling in Agrobacterium–plant interactions. Microbiol Rev 56:12–31PubMedGoogle Scholar
  58. Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170:4047–4054PubMedGoogle Scholar
  59. Wolff S, Hahne H, Hecker M, Becher D (2008) Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Mol Cell Proteomics 7:1460–1468CrossRefPubMedGoogle Scholar
  60. Wood DW, Setubal JC, Kaul R et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323CrossRefPubMedGoogle Scholar
  61. Wu HY, Chung PC, Shih HW, Wen SR, Lai EM (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sonja Klüsener
    • 1
  • Stephanie Hacker
    • 1
  • Yun-Long Tsai
    • 2
  • Julia E. Bandow
    • 1
  • Ronald Gust
    • 3
  • Erh-Min Lai
    • 2
  • Franz Narberhaus
    • 1
  1. 1.Ruhr-Universität Bochum, Lehrstuhl für Biologie der MikroorganismenBochumGermany
  2. 2.Institute of Plant and Microbial BiologyTaipeiTaiwan
  3. 3.Freie Universität Berlin, Pharmazeutische ChemieBerlinGermany

Personalised recommendations