Advertisement

Molecular Genetics and Genomics

, Volume 283, Issue 2, pp 185–196 | Cite as

Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes

  • Satoko Matsukura
  • Junya Mizoi
  • Takumi Yoshida
  • Daisuke Todaka
  • Yusuke Ito
  • Kyonoshin Maruyama
  • Kazuo Shinozaki
  • Kazuko Yamaguchi-ShinozakiEmail author
Original Paper

Abstract

DREB2s (dehydration-responsive element-binding protein 2s) are transcription factors that interact with a cis-acting DRE (dehydration-responsive element)/CRT (C-repeat) sequence and activate the expression of downstream genes involved in water- and heat-shock stress responses and tolerance in Arabidopsis thaliana. In this study, we performed a comprehensive analysis of all five DREB2-type genes in rice (OsDREB2 s: OsDREB2A, OsDREB2B, OsDREB2C, OsDREB2E and OsABI4) to determine which of them contribute to plant stress responses. We analysed the expression patterns of these genes under abiotic stress conditions, and we examined the subcellular localisation and transcriptional activation activity of their translational products in protoplasts. Only OsDREB2A and OsDREB2B showed abiotic stress-inducible gene expression. In addition, OsDREB2B showed nuclear specific localisation and the highest transactivation activity. OsDREB2B has functional and non-functional forms of its transcript similar to its orthologues in the grass family, and the functional form of its transcript was markedly increased during stress conditions. We analysed the splicing mechanism of OsDREB2B with transgenic rice that express the non-functional transcript and we found that the non-functional form is not a precursor of the functional form; thus, stress-inducible alternative splicing of pre-mRNA is an important mechanism for the regulation of OsDREB2B. Transgenic Arabidopsis plants overexpressing OsDREB2B showed enhanced expression of DREB2A target genes and improved drought and heat-shock stress tolerance. These results suggest that OsDREB2B is a key gene that encodes a stress-inducible DREB2-type transcription factor that functions in stress-responsive gene expression in rice.

Keywords

Transcription factor OsDREB2B Abiotic stress tolerance Alternative splicing Rice 

Notes

Acknowledgments

We are grateful to K. Murai, K. Amano, E. Kishi and K. Yoshiwara for their excellent technical support and to M. Toyoshima for skilful editorial assistance. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan.

Supplementary material

438_2009_506_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1.58 mb)

References

  1. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277:189–198CrossRefPubMedGoogle Scholar
  2. Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713CrossRefPubMedGoogle Scholar
  3. Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13CrossRefPubMedGoogle Scholar
  4. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  5. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198CrossRefPubMedGoogle Scholar
  6. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689CrossRefPubMedGoogle Scholar
  7. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763CrossRefPubMedGoogle Scholar
  8. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91CrossRefPubMedGoogle Scholar
  9. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488CrossRefPubMedGoogle Scholar
  10. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286CrossRefPubMedGoogle Scholar
  11. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832CrossRefPubMedGoogle Scholar
  12. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153CrossRefPubMedGoogle Scholar
  13. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106CrossRefPubMedGoogle Scholar
  14. Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30:679–684CrossRefPubMedGoogle Scholar
  15. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291CrossRefPubMedGoogle Scholar
  16. Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem Biophys Res Commun 362:431–436CrossRefPubMedGoogle Scholar
  17. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406CrossRefPubMedGoogle Scholar
  18. Makino A, Mae T, Ohira K (1988) Differences between wheat and rice in the enzymic properties of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 174:30–38CrossRefGoogle Scholar
  19. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665CrossRefPubMedGoogle Scholar
  20. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630CrossRefPubMedGoogle Scholar
  21. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95CrossRefPubMedGoogle Scholar
  22. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69CrossRefPubMedGoogle Scholar
  23. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707CrossRefPubMedGoogle Scholar
  24. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271PubMedGoogle Scholar
  25. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009CrossRefPubMedGoogle Scholar
  26. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309CrossRefPubMedGoogle Scholar
  27. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827CrossRefPubMedGoogle Scholar
  28. Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317CrossRefPubMedGoogle Scholar
  29. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedGoogle Scholar
  30. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040CrossRefPubMedGoogle Scholar
  31. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599CrossRefPubMedGoogle Scholar
  32. Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339CrossRefPubMedGoogle Scholar
  33. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264CrossRefPubMedGoogle Scholar
  34. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803CrossRefPubMedGoogle Scholar
  35. Yamaguchi-Shinozaki K, Sakuma Y, Ito Y, Shinozaki K (2006) The DRE/DREB regulon of gene expression in Arabidopsis and rice in response to drought and cold stress. In: Ribaut JM (ed) Drought adaptation in cereals. The Haworth Press, New York, pp 583–598Google Scholar
  36. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Satoko Matsukura
    • 1
    • 2
  • Junya Mizoi
    • 1
    • 2
  • Takumi Yoshida
    • 1
  • Daisuke Todaka
    • 1
  • Yusuke Ito
    • 2
  • Kyonoshin Maruyama
    • 2
  • Kazuo Shinozaki
    • 3
  • Kazuko Yamaguchi-Shinozaki
    • 1
    • 2
    Email author
  1. 1.Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Biological Resources DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)IbarakiJapan
  3. 3.Plant Science Center, RIKEN Yokohama InstituteKanagawaJapan

Personalised recommendations