Advertisement

Molecular Genetics and Genomics

, Volume 282, Issue 3, pp 307–317 | Cite as

EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas

  • André N. Pitaluga
  • Vicente Beteille
  • Amanda R. Lobo
  • João R. Ortigão-Farias
  • Alberto M. R. Dávila
  • Adelson A. Souza
  • J. Marcelo Ramalho-Ortigão
  • Yara M. Traub-Cseko
Original Paper

Abstract

Leishmaniasis is an important worldwide public health problem. Visceral leishmaniasis caused by Leishmania infantum chagasi is mainly transmitted by Lutzomyia longipalpis in the Americas. Leishmania development within the sand fly vector is mostly restricted to the midgut. Thus, a comparative analysis of blood-fed versus infected midguts may provide an invaluable insight into various aspects of sand fly immunity, physiology of blood digestion, and, more importantly, of Leishmania development. To that end, we have engaged in a study to identify expressed sequenced tags (ESTs) from L. longipalpis cDNA libraries produced from midguts dissected at different times post blood meal and also after artificial infection with L. i. chagasi. A total of 2,520 ESTs were obtained and, according to the quality of the sequencing data obtained, assembled into 378 clusters and 1,526 individual sequences or singletons totalizing 1,904 sequences. Several sequences associated with defense, apoptosis, RNAi, and digestion processes were annotated. The data presented here increases current knowledge on the New World sand fly transcriptome, contributing to the understanding of various aspects of the molecular physiology of L. longipalpis, and mechanisms underlying the relationship of this sand fly species with L. i. chagasi.

Keywords

Lutzomyia longipalpis EST sequencing Blood-feeding Leishmania infection 

Notes

Acknowledgments

We would like to thank the PDTIS/FIOCRUZ sequencing platform staff, Leonardo Henrique Ferreira Gomes and Érico Albuquerque Vasconcellos. Also, we would like to thank Dr. Alexandre Peixoto for his support, Dr. Carlos José de Carvalho-Pinto for helping with the statistical analyses and MSc. Glauber Wagner for the informatics support. We would like to acknowledge the contribution of Barbara Rosa Pimentel Machado, Thuanne Viriato de Mello and Graziela Sampaio Morgado during sequencing. This work was supported by PAPES IV-Fiocruz, Instituto Oswaldo Cruz/Fiocruz, FAPERJ and CNPq.

Supplementary material

438_2009_466_MOESM1_ESM.pdf (4 kb)
Supplementary material 1 (PDF 4 kb)
438_2009_466_MOESM2_ESM.pdf (6 kb)
Supplementary material 2 (PDF 5 kb)
438_2009_466_MOESM3_ESM.xls (232 kb)
Supplementary material 3 (XLS 231 kb)
438_2009_466_MOESM4_ESM.xls (190 kb)
Supplementary material 4 (XLS 190 kb)
438_2009_466_MOESM5_ESM.xls (36 kb)
Supplementary material 5 (XLS 36 kb)
438_2009_466_MOESM6_ESM.xls (154 kb)
Supplementary material 6 (XLS 153 kb)
438_2009_466_MOESM7_ESM.xls (412 kb)
Supplementary material 7 (XLS 412 kb)

References

  1. Abraham EG, Pinto SB, Ghosh A, Vanlandingham DL, Budd A, Higgs S, Kafatos FC, Jacobs-Lorena M, Michel K (2005) An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proc Natl Acad Sci USA 102:16327–16332PubMedCrossRefGoogle Scholar
  2. Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, Seitz AE, Lawyer P, Garfield M, Pham M, Valenzuela JG (2006) Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7:52PubMedCrossRefGoogle Scholar
  3. Aso Y, Yamashita T, Meno K, Murakami M (1994) Inhibition of prophenoloxidase-activating enzyme from Bombyx mori by endogenous chymotrypsin inhibitors. Biochem Mol Biol Int 33:751–758PubMedGoogle Scholar
  4. Bauzer LG, Souza NA, Maingon RD, Peixoto AA (2007) Lutzomyia longipalpis in Brazil: a complex or a single species? A mini-review. Mem Inst Oswaldo Cruz 102:1–12PubMedCrossRefGoogle Scholar
  5. Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, Svobodova M, Beverley SM, Spath G, Brun R, Pesson B, Bulet P (2004) Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun 72:7140–7146PubMedCrossRefGoogle Scholar
  6. Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM (1999) Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA 96:15155–15160PubMedCrossRefGoogle Scholar
  7. Chen-Chih Wu R, Shaio MF, Cho WL (2007) A p38 MAP kinase regulates the expression of the Aedes aegypti defensin gene in mosquito cells. Insect Mol Biol 16:389–399PubMedCrossRefGoogle Scholar
  8. Danielli A, Barillas-Mury C, Kumar S, Kafatos FC, Loukeris TG (2005) Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells. Cell Microbiol 7:181–190PubMedCrossRefGoogle Scholar
  9. Davila AM, Lorenzini DM, Mendes PN, Satake TS, Sousa GR, Campos LM, Mazzoni CJ, Wagner G, Pires PF, Grisard EC, Cavalcanti MC, Campos ML (2005) GARSA: genomic analysis resources for sequence annotation. Bioinformatics 21:4302–4303PubMedCrossRefGoogle Scholar
  10. Dillon RJ, Lane RP (1993) Influence of Leishmania infection on blood-meal digestion in the sand flies Phlebotomus papatasi and P. langeroni. Parasitol Res 79:492–496PubMedCrossRefGoogle Scholar
  11. Dillon RJ, Ivens AC, Churcher C, Holroyd N, Quail MA, Rogers ME, Soares MB, Bonaldo MF, Casavant TL, Lehane MJ, Bates PA (2006) Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship. Genomics 88:831–840PubMedCrossRefGoogle Scholar
  12. Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477PubMedCrossRefGoogle Scholar
  13. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred II. Error probabilites. Genome Res 8:186–194PubMedGoogle Scholar
  14. Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796PubMedGoogle Scholar
  15. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskem DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturvedi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hilllenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149PubMedCrossRefGoogle Scholar
  16. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  17. Hurd H, Carter V (2004) The role of programmed cell death in Plasmodium-mosquito interactions. Int J Parasitol 34:1459–1472PubMedCrossRefGoogle Scholar
  18. Ishaq M, Ma L, Wu X, Mu Y, Pan J, Hu J, Hu T, Fu Q, Guo D (2009) The DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-mediated transcription. J Cell Biochem 106:296–305PubMedCrossRefGoogle Scholar
  19. Ito K, Kidokoro K, Sezutsu H, Nohata J, Yamamoto K, Kobayashi I, Uchino K, Kalyebi A, Eguchi R, Hara W, Tamura T, Katsuma S, Shimada T, Mita K, Kadono-Okuda K (2008) Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. Proc Natl Acad Sci USA 105:7523–7527PubMedCrossRefGoogle Scholar
  20. Jochim RC, Teixeira CR, Laughinghouse A, Mu J, Oliveira F, Gomes RB, Elnaiem D-E, Valenzuela JG (2008) The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics 9:15PubMedCrossRefGoogle Scholar
  21. Kamhawi S, Ramalho-Ortigão M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barillas-Mury C, Sacks DL, Valenzuela JG (2004) A role for insect galectins in parasite survival. Cell 119:329–341PubMedCrossRefGoogle Scholar
  22. Killick-Kendrick R, Rioux JA (1991) Intravectorial cycle of Leishmania in sand flies. Ann Parasitol Hum Comp 66:71–74PubMedGoogle Scholar
  23. Kriventseva EV, Koutsos AC, Blass C, Kafatos FC, Christophides GK, Zdobnov EM (2005) AnoEST: toward Anopheles gambiae functional genomics. Genome Res 15:893–899PubMedCrossRefGoogle Scholar
  24. Lainson R, Rangel EF (2005) Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem Inst Oswaldo Cruz 100:811–827PubMedGoogle Scholar
  25. Lata S, Raghava GP (2008) PRRDB: a comprehensive database of pattern-recognition receptors and their ligands. BMC Genomics 9:180PubMedCrossRefGoogle Scholar
  26. Okech BA, Boudko DY, Linser PJ, Harvey WR (2008) Cationic pathway of pH regulation in larvae of Anopheles gambiae. J Exp Biol Mar 211:957–968CrossRefGoogle Scholar
  27. Pitaluga AN, Mason PW, Traub-Cseko YM (2008) Non-specific anti-viral response detected in RNA-treated cultured cells of the sandfly, Lutzomyia longipalpis. Dev Comp Immunol 32:191–197PubMedCrossRefGoogle Scholar
  28. Ramalho-Ortigão JM, Temporal P, de Oliveira SM, Barbosa AF, Vilela ML, Rangel EF, Brazil RP, Traub-Cseko YM (2001) Characterization of constitutive and putative differentially expressed mRNAs by means of expressed sequence tags, differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR from the sand fly vector Lutzomyia longipalpis. Mem Inst Oswaldo Cruz 96:105–111PubMedCrossRefGoogle Scholar
  29. Ramalho-Ortigão JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG, Dwyer DM, Sacks DL, Valenzuela JG (2005) Characterization of a blood activated chitinolytic system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Mol Biol 14:703–712PubMedCrossRefGoogle Scholar
  30. Ramalho-Ortigão M, Jochim RC, Anderson JM, Lawyer PG, Pham VM, Kamhawi S, Valenzuela JG (2007a) Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sand flies. BMC Genomics 8:300PubMedCrossRefGoogle Scholar
  31. Ramalho-Ortigão JM, Pitaluga AN, Telleria EL, Marques C, Souza AA, Traub-Cseko YM (2007b) Cloning and characterization of a V-ATPase subunit C from the American visceral leishmaniasis vector Lutzomyia longipalpis modulated during development and blood ingestion. Mem Inst Oswaldo Cruz 102:509–515PubMedCrossRefGoogle Scholar
  32. Reichhart JM (2005) Tip of another iceberg: Drosophila serpins. Trends Cell Biol 15:659–665PubMedCrossRefGoogle Scholar
  33. Rheault MR, Okech BA, Keen SB, Miller MM, Meleshkevitch EA, Linser PJ, Boudko DY, Harvey WR (2007) Molecular cloning, phylogeny and localization of AgNHA1: the first Na +/H + antiporter (NHA) from a metazoan, Anopheles gambiae. J Exp Biol 210:3848–3861PubMedCrossRefGoogle Scholar
  34. Shahabuddin M, Lemos FJ, Kaslow DC, Jacobs-Lorena M (1996) Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum. Infect Immun 64:739–743PubMedGoogle Scholar
  35. Shaw J (2007) The leishmaniasis—survival and expansion in a changing world. A mini-review. Mem Inst Oswaldo Cruz 102:541–547PubMedCrossRefGoogle Scholar
  36. Soares RP, Turco SJ (2003) Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae): a review. An Acad Bras Cienc 75:301–330PubMedGoogle Scholar
  37. Sperança MA, Capurro ML (2007) Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era: a review. Mem Inst Oswaldo Cruz 102:425–433PubMedCrossRefGoogle Scholar
  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  39. Telleria EL, Pitaluga AN, Ortigão-Farias JR, de Araújo APO, Ramalho-Ortigão JM, Traub-Cseko YM (2007) Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis. Arch Insect Biochem Physiol 18:53–63CrossRefGoogle Scholar
  40. Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC (2005) Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr Biol 15:1185–1195PubMedCrossRefGoogle Scholar
  41. Ward RD, Lainson R, Shaw JJ (1978) Some methods for membrane feeding of laboratory reared, neotropical sandflies (Diptera: Psychodidae). Ann Trop Med Parasitol 72:269–276PubMedGoogle Scholar
  42. Wermelinger ED, Rangel EF, Souza NA, Barbosa AF (1987) A practical method for mass breeding of sandflies in the laboratory: Lutzomyia intermedia (Lutz & Neiva, 1912) and Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae). Mem Inst Oswaldo Cruz 82:441–442PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • André N. Pitaluga
    • 1
  • Vicente Beteille
    • 1
  • Amanda R. Lobo
    • 1
  • João R. Ortigão-Farias
    • 1
  • Alberto M. R. Dávila
    • 1
  • Adelson A. Souza
    • 2
  • J. Marcelo Ramalho-Ortigão
    • 1
    • 3
  • Yara M. Traub-Cseko
    • 1
    • 4
  1. 1.Laboratório de Biologia Molecular de Tripanosomatídeos e FlebotomíneosInstituto Oswaldo Cruz, FiocruzRio de JaneiroBrazil
  2. 2.Instituto Evandro ChagasSeção de ParasitologiaBelémBrazil
  3. 3.Department of EntomologyKansas State UniversityManhattanUSA
  4. 4.Rio de JaneiroBrazil

Personalised recommendations