Molecular Genetics and Genomics

, Volume 282, Issue 2, pp 165–172 | Cite as

DrosophilaP transposons of the urochordata Ciona intestinalis

  • Stefanie Kimbacher
  • Ingrid Gerstl
  • Branko Velimirov
  • Sylvia Hagemann
Original Paper


P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage.


P transposon Ciona Drosophila THAP9 Urochordata Evolution 



The genomic C. intestinalis library was kindly provided by Weiyang Shi (Berkley). We thank Daniela Schneider for various discussions, and the anonymous reviewers for valuable suggestions to improve the manuscript.

Supplementary material

438_2009_453_MOESM1_ESM.jpg (61 kb)
Supplementary material 1 (JPG 60 kb)
438_2009_453_MOESM2_ESM.pdf (23 kb)
Supplementary material 2 (PDF 23 kb)
438_2009_453_MOESM3_ESM.pdf (28 kb)
Supplementary material 3 (PDF 28 kb)
438_2009_453_MOESM4_ESM.pdf (13 kb)
Supplementary material 4 (PDF 12 kb)
438_2009_453_MOESM5_ESM.pdf (26 kb)
Supplementary material 5 (PDF 25 kb)
438_2009_453_MOESM6_ESM.pdf (13 kb)
Supplementary material 6 (PDF 12 kb)
438_2009_453_MOESM7_ESM.jpg (34 kb)
Supplementary material 7 (JPG 33 kb)
438_2009_453_MOESM8_ESM.pdf (78 kb)
Supplementary material 8 (PDF 78 kb)


  1. Anxolabéhère D, Nouaud D, Periquet G, Tchen P (1985a) P-Element distribution in Eurasian populations of Drosophila melanogaster: A genetic and molecular analysis. Proc Natl Acad Sci USA 82:5418–5422PubMedCrossRefGoogle Scholar
  2. Anxolabéhère D, Nouaud D, Périquet G (1985b) Séquences homologoues á l`élément P chez des espèces de Drosophila du groupe obscura et chez Scaptomyza pallida (Drosophilidae). Génét Sél Evol 17:579–584CrossRefGoogle Scholar
  3. Anxolabéhère D, Kidwell MG, Periquet G (1988) Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Mol Biol Evol 5:252–269PubMedGoogle Scholar
  4. Brookfield JF, Montgomery E, Langley CH (1984) Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310:330–332PubMedCrossRefGoogle Scholar
  5. Daniels SB, Strausbaugh LD (1986) The distribution of P-element sequences in Drosophila: the willistoni and saltans species groups. J Mol Evol 23:138–148PubMedCrossRefGoogle Scholar
  6. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  7. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968PubMedCrossRefGoogle Scholar
  8. Gissi C, Pesole G, Cattaneo E, Tartari M (2006) Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus. BMC Genomics 7:288PubMedCrossRefGoogle Scholar
  9. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a webserver for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 1;33(Web server issue):W557–559Google Scholar
  10. Hagemann S, Hammer SE (2006) The implications of DNA transposons in the evolution of P elements in zebrafish (Danio rerio). Genomics 5:572–579CrossRefGoogle Scholar
  11. Hagemann S, Pinsker W (2001) Drosophila P transposons in the human genome? Mol Biol Evol 18:1979–1982PubMedGoogle Scholar
  12. Hagemann A, Miller WJ, Pinsker W (1996) Repeated horizontal transfer of P transposons between Scaptomyza pallida and Drosophila bifasciata. Genetica 98:43–51PubMedCrossRefGoogle Scholar
  13. Hammer SE, Strehl S, Hagemann S (2005) Homologs of Drosophila P transposons were mobile in zebrafish but have been domesticated in a common ancestor of chicken and human. Mol Biol Evol 22:833–844PubMedCrossRefGoogle Scholar
  14. Haring E, Hagemann S, Pinsker W (1998) Transcription and splicing patterns of M- and O-type P elements in Drosophila bifasciata, D. helvetica, and Scaptomyza pallida. J Mol Evol 46:542–551PubMedCrossRefGoogle Scholar
  15. Hoshino Z, Nishikawa T (1985) Taxonomic studies of Ciona intestinalis (L.) and its allies. Publ Seto Mar Lab 30:61–79Google Scholar
  16. Jiang D, Smith WC (2005) Self- and cross fertilization in the solitary ascidian Ciona savignyi. Biol Bull 209:107–112PubMedCrossRefGoogle Scholar
  17. Johnson DS, Davidson B, Brown CD, Smith WC, Sidow A (2004) Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance. Genome Res 14:2448–2456PubMedCrossRefGoogle Scholar
  18. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467PubMedCrossRefGoogle Scholar
  19. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664PubMedGoogle Scholar
  20. Kidwell MG (1983) Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc Natl Acad Sci USA 80:1655–1659PubMedCrossRefGoogle Scholar
  21. Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–833PubMedGoogle Scholar
  22. Lansman RA, Stacey SN, Grigliatti TA, Brock HW (1985) Sequences homologous to the P mobile element of Drosophila melanogaster are widely distributed in the subgenus Sophophora. Nature 318:561–563CrossRefGoogle Scholar
  23. Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7–19PubMedCrossRefGoogle Scholar
  24. Lee SH, Clark JB, Kidwell MG (1999) A P element-homologous sequence in the house fly Musca domestica. Insect Mol Biol 8:491–500PubMedCrossRefGoogle Scholar
  25. Miller WJ, Hagemann S, Reiter E, Pinsker W (1992) P-element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc Natl Acad Sci USA 89:4018–4022PubMedCrossRefGoogle Scholar
  26. Misra S, Rio DC (1990) Cytotype control of Drosophila P element transposition: the 66 kD protein is a repressor of transposase activity. Cell 62:269–284PubMedCrossRefGoogle Scholar
  27. O’Hare K, Rubin GM (1983) Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25–35PubMedCrossRefGoogle Scholar
  28. O′Hare K, Driver A, McGrath S, Johnson-Schlitz DM (1992) Distribution and structure of cloned P elements from the Drosophila melanogaster P strain. Genet Res 60:33–41PubMedCrossRefGoogle Scholar
  29. Perkins HD, Howells AJ (1992) Genomic sequences with homology to the P element of Drosophila melanogaster occur in the blowfly Lucilia cuprina. Proc Natl Acad Sci USA 89:10753–10757PubMedCrossRefGoogle Scholar
  30. Quesneville H, Nouaud D, Anxolabéhère D (2005) Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol Biol Evol 22:741–746PubMedCrossRefGoogle Scholar
  31. Rio DC, Rubin GM (1988) Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeat of the P transposable element. Proc Natl Acad Sci USA 85:8929–8933PubMedCrossRefGoogle Scholar
  32. Rio DC, Laski FA, Rubin GM (1986) Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell 44:21–32PubMedCrossRefGoogle Scholar
  33. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  34. Roussigne M, Kossida S, Lavigne AC, Clouaire T, Ecochard V, Glories A, Amalric F, Girard JP (2003a) The THAP domain: a novel protein motif with similarity to the DNA- binding domain of P element transposase. Trends Biochem Sci 28:66–69PubMedCrossRefGoogle Scholar
  35. Roussigne M, Cayrol C, Clouaire T, Amalric F, Girard JP (2003b) THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 22:2432–2442PubMedCrossRefGoogle Scholar
  36. Simonelig M, Anxolabéhère D (1991) A P element of Scaptomyza pallida is active in Drosophila melanogaster. Proc Natl Acad Sci USA 88:6102–6106PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stefanie Kimbacher
    • 1
  • Ingrid Gerstl
    • 1
  • Branko Velimirov
    • 1
  • Sylvia Hagemann
    • 1
  1. 1.Laboratory of Microbiology, Molecular Biology and Virology (MMV), Centre of Anatomy and Cell BiologyMedical University of ViennaViennaAustria

Personalised recommendations